Math, asked by sajan6491, 16 days ago

 \rm If  \: z =  {x}^2 +  y^2 ,prove \: that \\   \rm{x}^{2} \frac{  \partial^{2} z}{ \partial { x}^{2} }   +2 x y\frac{ \partial  {}^{2} z}{\partial x\partial y}  +  {y}^{2}  \frac{ {\partial}^{2}z }{\partial {y}^{2} }  = 2z

Answers

Answered by anindyaadhikari13
18

Solution:

Given That:

 \rm \longrightarrow z = {x}^{2} +  {y}^{2}

Partial differentiating both sides with respect to x, we get:

 \rm \longrightarrow \dfrac{ \partial z}{ \partial x}  = 2x

Partial differentiating again with respect to x, we get:

 \rm \longrightarrow \dfrac{ \partial^{2}  z}{ \partial x^{2} }  = 2 -(i)

Consider again:

 \rm \longrightarrow z = {x}^{2} +  {y}^{2}

Partial differentiating both sides with respect to y, we get:

 \rm \longrightarrow \dfrac{ \partial z}{ \partial y}  = 2y

Now, partial differentiating both sides with respect to x, we get:

 \rm \longrightarrow \dfrac{ \partial^{2}  z}{ \partial x \: \partial y}  = 0 - (ii)

Consider again:

 \rm \longrightarrow \dfrac{ \partial z}{ \partial y}  = 2y

Partial differentiating both sides with respect to y, we get:

 \rm \longrightarrow \dfrac{ \partial^{2}  z}{ \partial y^{2} }  = 2 - (iii)

Now, consider Left Hand Side, we get:

 \rm = {x}^{2} \dfrac{ \partial^{2} z}{ \partial {x}^{2} }  + 2xy \dfrac{ { \partial}^{2}x}{ \partial x \:  \partial y} + {y}^{2} \dfrac{ \partial^{2}z }{ \partial {y}^{2} }

From (i), (ii) and (iii), we can write:

 \rm = 2{x}^{2} + 0 + 2{y}^{2}

 \rm = 2({x}^{2} +  {y}^{2} )

 \rm = 2z

Therefore:

 \rm \longrightarrow {x}^{2} \dfrac{ \partial^{2} z}{ \partial {x}^{2} }  + 2xy \dfrac{ { \partial}^{2}x}{ \partial x \:  \partial y} + {y}^{2} \dfrac{ \partial^{2}z }{ \partial {y}^{2}} = 2z

Hence Proved.

Learn More:

\begin{gathered}\boxed{\begin{array}{c|c}\bf f(x)&\bf\dfrac{d}{dx}f(x)\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \sf k&\sf0\\ \\ \sf sin(x)&\sf cos(x)\\ \\ \sf cos(x)&\sf-sin(x)\\ \\ \sf tan(x)&\sf{sec}^{2}(x)\\ \\ \sf cot(x)&\sf-{cosec}^{2}(x)\\ \\ \sf sec(x)&\sf sec(x)tan(x)\\ \\ \sf cosec(x)&\sf-cosec(x)cot(x)\\ \\ \sf\sqrt{x}&\sf\dfrac{1}{2\sqrt{x}}\\ \\ \sf log(x)&\sf\dfrac{1}{x}\\ \\ \sf{e}^{x}&\sf{e}^{x}\end{array}}\\ \end{gathered}

Similar questions