Math, asked by Talpadadilip783, 19 hours ago


 \\ \rm \int e^{x}\left(2021+\tan x+\tan ^{2} x\right) d x= \underline{ \qquad\qquad }+C
 \rule{300pt}{0.1pt}

Answer with proper explanation.

Don't Dare for spam.

→ Expecting answer from :

★ Moderators
★ Brainly stars and teacher
★ Others best users ​​​​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given integral is

\rm \int e^{x}\left(2021+\tan x+\tan ^{2} x\right) d x= \underline{ \qquad\qquad }+c \\

Let assume that

\rm \int e^{x}\left(2021+\tan x+\tan ^{2} x\right) d x= g(x)+c \\

So, it means we have to find the value of g(x)

So, Consider

\rm \: \displaystyle\int\rm e^{x}\left(2021+\tan x+\tan ^{2} x\right)dx \\

can be rewritten as

\rm \: =  \:  \displaystyle\int\rm e^{x}\left(2020 + 1+\tan x+\tan ^{2} x\right)dx \\

can be re-arranged as

\rm \: =  \:  \displaystyle\int\rm e^{x}\left(2020 +\tan x+[1 + \tan ^{2} x]\right)dx \\

\rm \: =  \:  \displaystyle\int\rm e^{x}\left(2020 +\tan x+\sec ^{2} x\right)dx \\

\rm \:  =  \: 2020\displaystyle\int\rm  {e}^{x}dx \:  +  \: \displaystyle\int\rm {e}^{x}(tanx +  {sec}^{2}x)dx \\

We know,

\boxed{ \rm{ \:\displaystyle\int\rm {e}^{x} \: [f(x) + f'(x)] \: dx \:  =  \: {e}^{x} \: f(x) + c \:  \: }} \\

and

\boxed{ \rm{ \:\displaystyle\int\rm {e}^{x} \: dx \:  =  \: {e}^{x} \:  +  \: c \:  \: }} \\

In second integral,

\rm \: f(x) = tanx \\

\rm \: f'(x) =  {sec}^{2}x  \\

So, using these results, we get

\rm \:  =  \: 2020{e}^{x} \:  +  \: {e}^{x} \: tanx \:  +  \: c \\

\rm \:  =  \: {e}^{x} \:(2020 +  \: tanx) \:  +  \: c \\

Hence,

\rm \: \displaystyle\int\rm e^{x}\left(2021+\tan x+\tan ^{2} x\right)dx  = {e}^{x}(2020 + tanx) + c\\

Now, it is given that

\rm \int e^{x}\left(2021+\tan x+\tan ^{2} x\right) d x= g(x)+c \\

So, on comparing two,

\rm\implies \:\boxed{ \rm{ \:g(x) = {e}^{x} \: (2020 + tanx) \:  \: }} \\

\rule{190pt}{2pt}

Remark :- Proof of the result

\boxed{ \rm{ \:\displaystyle\int\rm {e}^{x} \: [f(x) + f'(x)] \: dx \:  =  \: {e}^{x} \: f(x) + c \:  \: }} \\

Consider,

\rm \:  \:\displaystyle\int\rm {e}^{x} \: [f(x) + f'(x)] \: dx \:  \\

\rm \:  =  \: \displaystyle\int\rm {e}^{x}f(x)dx \:  +  \: \displaystyle\int\rm {e}^{x}f'(x)dx \\

On integrating first integral, by using Integration by parts,

\rm \:=f(x)\displaystyle\int\rm {e}^{x}dx  - \displaystyle\int\rm \bigg[\dfrac{d}{dx}f(x)\displaystyle\int\rm {e}^{x}dx \bigg]dx\:  +  \: \displaystyle\int\rm {e}^{x}f'(x)dx \\

\rm \:  =  \: f(x){e}^{x} - \displaystyle\int\rm f'(x){e}^{x}dx + \displaystyle\int\rm {e}^{x}f'(x)dx \:  +  \: c \\

\rm \:  =  \: {e}^{x} \: f(x) \:  +  \: c \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}


amansharma264: Excellent
Similar questions