English, asked by Anonymous, 6 months ago

\rm\underline\bold{ QUESTION \red{\huge{\checkmark}}}the perimete tryr of a triangle is 450m . the ratio of i ints side's are 13:12:5 using herons formula find the area of the triangle​

Answers

Answered by ItzCaptonMack
4

\huge\mathtt{\fbox{\red{Answer✍︎}}}

\large\underline\mathfrak{\pink{GIVEN,}}

\dashrightarrow \red{ Perimeter\:of\: triangle= 450m}

\dashrightarrow  \orange{ratios\:of\:the\:sides\:of\:triangles\:are }\\ \dashrightarrow \pink{13:12:5}

\large{\boxed{\bf{ \mathfrak{\blue{FORMULA,}}}}}

\rm{\boxed{\sf{ \large{\circ}\:\: area\:of\:triangle_{(herons\:fomula)}=  \sqrt{s(s - a)(s - b)(s - c)} \:\: \large{\circ}}}}

\large\underline\mathfrak{\pink{TO\:FIND,}}

\dashrightarrow \green{Area\:of\:triangle\:using\:herons\: formula.}

\large\underline\mathfrak{\purple{SOLUTION,}}

\therefore \green{let\:the\:constant\:be\:'x'\:m}

\dashrightarrow \red{sides\:of\:triangle\: are,}\\ \dashrightarrow \blue{a=13x} \\ \purple{b= 12x }\\ \green{c= 5x }

\therefore \orange{finding\:the\:value\:of\:x.}

\dashrightarrow \purple{perimeter\:of\:triangle= a+b+c}

\dashrightarrow \blue{13x+12x+5x=450}

\implies \green{30x=450}

\implies \green{x= \dfrac{450}{30} }

\implies \green{x = \cancel\dfrac{450}{30}}

\implies \green{x=15}

\rm{\boxed{\bf{ \:\: x=15 \:\: }}}

\dashrightarrow \red{x=15}\\  \pink{a= 13x= 13\times 15= 195m}\\ \blue{\dashrightarrow b=12x= 12\times 15 = 180m}\\ \dashrightarrow \purple{c=5x= 5\times 15= 75m}

NOW, FINDING AREA OF TRIANGLE BY HERONS FORMULA,

\therefore \orange{s= \dfrac{a+b+c}{2}}

\implies \orange{ s= \dfrac{195+180+75}{2}}

\implies \orange{s= \dfrac{450}{2}}

\implies \orange{s= 225}

\bf\dashrightarrow \red{area\:of\:triangle_{(herons\:fomula)}=  \sqrt{s(s - a)(s - b)(s - c)}}

\implies \purple{\sqrt{225(225-195)(225-180)(225-75)}}

\implies \purple{ \sqrt{225(30)(45)(150)}}

\implies \purple{\sqrt{ 225(1350)(150)}}

\implies \purple{15\sqrt{202500}}

\implies \purple{15 \times 450}

\implies \purple{6750m^2}

\rm{\boxed{\sf{ \large{\circ}\:\:area\:of\:triangle= 6750m^2 \:\: \large{\circ}}}}

\rm\underline\mathfrak{\pink{AREA\:OF\:TRIANGLE\:IS\:6750m^2.}}

Answered by ADARSHBrainly
15

Given

  • Perimeter of triangle = 450 m
  • Ratio of its side = 13 : 12 : 5

To find

  • Area of triangle by using Heron's Formula

Solution

Concept of the question:

  • Here the question is given from Heron's formula. In this question we have given that a triangle has 450 perimeter and also ratio of sides are given 13 : 12 : 5. We have asked to find area of triangle.

Procedure to do question.

  • First Here we have to take all sides of triangle's side Ratio in x form as 13x, 12x, 5x, also it will be added to give value of x and then by putting value of x in all sides which in unknown that we give length of all sides. It will be divided by 2 to give semiperimeter of triangle. This semiperimeter will be used in Heron's formula to give area of triangle.

Formula we use :-

{\large{\underline{\boxed{\bf{ Semiperimeter = \frac{ a + b + c}{2}}}}}}

Here a, b, c are sides.

{\large{\underline{\boxed{\bf{ Area =  \sqrt{s(s - a)(s - b)(s - c)} }}}}}

Here s is semiperimeter and a, b, c are all sides.

Value of x is :-

{\sf{\implies{13x + 12x + 5x = 450}}}

{\sf{\implies{30x = 450}}}

 \\ {\sf{\implies{x =  \frac{450}{30} }}}

 \large{ \boxed{\implies{ \blue { \bf{x = 15}}}}}

So, length of all sides are :-

{\bf{\large{\implies 13x = 13\times 15 = {\large{\boxed{\blue{ \bf{195 \: m}}}}}}}}

{\bf{\large{\implies 12x = 12\times 15 = {\large{\boxed{\blue{ \bf{180 \: m}}}}}}}}

{\bf{\large{\implies 5x = 5\times 15 = {\large{\boxed{\blue{ \bf{75 \: m}}}}}}}}

Semiperimeter of triangle is :-

  • Here a is of 195m , b is of 180m and c is of 75m.

 \\ { \sf{ Semiperimeter = \frac{ a + b + c}{2}}}

 \\ { \sf{ Semiperimeter = \frac{ 195 + 180 + 75}{2}}}

 \\ { \sf{ Semiperimeter = \frac{ 450}{2}}}

 \large{ \boxed{{ \blue { \bf{Semiperimeter = 225 \:  m}}}}}

Area of triangle is :-

  • Here s is semiperimeter which is 225 m.

{\sf{ Area =  \sqrt{s(s - a)(s - b)(s - c)} }}

{\sf{ Area =  \sqrt{225 \: (225 - 195)(225 - 180)(225 - 75)} }}

{\sf{ Area =  \sqrt{225 \: (30)(45)(150)} }}

{\sf{ Area =  \sqrt{45 \times 5 \times 30 \times 45 \times 30 \times 5} }}

{\sf{ Area =45 \times 5 \times 30 }}

 \huge{ \boxed{{ \red { \bf{Area = 6750  \: m^{2}}}}}}

Similar questions