Math, asked by tanmayshivakumar, 10 months ago

 root7y^2 - 6y - 13root7 = 0

Answers

Answered by irshadsyed281
6

\bold{\blue{\underline{\red{G}\pink{iv}\green{en}\purple{:-}}}}\\

  • √7y² - 6y - 13√7 = 0

\bold{\blue{\underline{\red{Zeros}\pink{\:of\:}\green{\:the\:Quadratic\:equation}\purple{:-}}}}

  • Zeros of the quadratic equation is the value of the variable for which when replaced in the quadratic equation the value for the quadratic equation changes to zero.

\bold{\blue{\underline{\red{General}\pink{\:form \:of }\green{\:Quadratic\:equation}\purple{:-}}}}

  • ax² + bx + c = 0

\bold{\blue{\underline{\red{Q}\pink{uest}\green{ion}\purple{:-}}}}

  • To find the zeros of the quadratic equation .

\bold{\blue{\underline{\red{S}\pink{olut}\green{ion}\purple{:-}}}}

  • a = √7
  • b = -6
  • c = 13√7
  • Quadratic formula =  \bold{\frac{-b\: \pm\:{\sqrt{b^{2}\:-\:4ac} }}{2a}}

  • x =  \bold{\frac{-(-6)\: \pm\:{\sqrt{-6^{2}\:-\:4(\sqrt{7})(-13\sqrt{7})} }}{2\sqrt{7}}}

  • x = \bold{\frac{6\: \pm\:\sqrt{36\:-\:(4)(-91)}}{2\sqrt{7}}}  

  • x = \bold{\frac{6\: \pm\:\sqrt{36\:+\:364}}{2\sqrt{7}}}

  • x =  \bold{\frac{6\: \pm\:\sqrt{400}}{2\sqrt{7}}}

  • x = \bold{\frac{6\: \pm\:20}{2\sqrt{7}}}

  • x = \bold{\frac{6\:-\:20}{2\sqrt{7}}}

  • x = \bold{\frac{-14}{2\sqrt{7}}}  

  • x = \bold{\frac{-7}{\sqrt{7}}}

  • x = \bold{\frac{-7\:\times\:\sqrt{7} }{\sqrt{7}\:\times\:\sqrt{7} }}

  • x = \bold{\frac{-7\:\times\:\sqrt{7} }{7}}

   

       \bold{\boxed{\red{x = -\sqrt{7}}}}

  • x = \bold{\frac{6\:+\:20}{2\sqrt{7}}}

  • x = \bold{\frac{26}{2\sqrt{7}}}

  • x = \bold{\frac{13}{\sqrt{7}}}  

  • x = \bold{\frac{13\:\times\:\sqrt{7} }{\sqrt{7}\:\times\:\sqrt{7} }}

        \bold{\boxed{\red{\frac{13\sqrt{7} }{7}}}}

Similar questions