Math, asked by Mister360, 5 months ago

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(1,1)(1,1)(2,5)\qbezier(1,1)(1,1)(4,1)\qbezier (2,5)(2,5)(4,1)\qbezier (1,1)(1,1)(3,3)\qbezier (4,1)(4,1)(1.5,3)\qbezier (2.5,1)(2.5,1)(2,5)\put (2,5.2){$\sf A(x_1,y_1) $}\put (0.8,0.6) {$\sf B(x_2,y_2) $}\put (4,0.6){$\sf C(x_3,y_3) $}\put (0,-1){\vector (0,1){8}}\put (0,-1){\vector (0,-1){0.1}}\put (-1,0){\vector(1,0){7}}\put (-1,0){\vector (-1,0){0.1}}\put (-1.2,-0.4){\sf X'}\put (6.25,-0.4){\sf X}\put (-0.2,-1.4){\sf Y'}\put (-0.2,7){\sf Y}\thinlines\multiput (-2,-2)(0.5,0){20}{\put (0,0){\line (0,1){10}}}\multiput (-2,-2)(0,0.5){21}{\put (0,0){\line(1,0){9.5}}}\end {picture}


\bf Question:-

\sf {Prove\:using\:co-ordinate\:Geometry\:that,} \\ \sf {All\: three \:Me diums\: of\:any\:triangle\:always\:p as s\:through\:a\:single\;dot (Only\:one\:dot)}


s7a1548vikram6689: hii
Mister360: why you spammed?
s7a1548vikram6689: yes
s7a1548vikram6689: jii
s7a1548vikram6689: what is your name
s7a1548vikram6689: hii
ItzArchimedes: Awesome Question !
Mister360: thanks

Answers

Answered by NewGeneEinstein
24

Answer:

Diagram:-

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(1,1)(1,1)(2,5)\qbezier(1,1)(1,1)(4,1)\qbezier (2,5)(2,5)(4,1)\qbezier (1,1)(1,1)(3,3)\qbezier (4,1)(4,1)(1.5,3)\qbezier (2.5,1)(2.5,1)(2,5)\put (2,5.2){$\sf A(x_1,y_1) $}\put (0.8,0.6) {$\sf B(x_2,y_2) $}\put (4,0.6){$\sf C(x_3,y_3) $}\put (0,-1){\vector (0,1){8}}\put (0,-1){\vector (0,-1){0.1}}\put (-1,0){\vector(1,0){7}}\put (-1,0){\vector (-1,0){0.1}}\put (-1.2,-0.4){\sf X'}\put (6.25,-0.4){\sf X}\put (-0.2,-1.4){\sf Y'}\put (-0.2,7){\sf Y}\put (1.2,3){\sf F}\put (3.5,3){\sf E}\put (2,2.7){\sf G}\put (2.5,0.5){\sf D}\end {picture}

Solution:-

\sf In \triangle ABC

Let,

\sf A(x_1,y_1)\:,B (x_2,y_2)\:and\:C (x_3,y_3)

Here ,The three Medians are

\sf AD,BE,CF

And,

\sf D\:is\:the\:centre\:of\:BC

\therefore\sf D=\left (\dfrac {x_2+x_3}{2},\dfrac {y_2+y_3}{2} \right)

\qquad\qquad\sf {:}\longrightarrow E=\left (\dfrac {x_1+x_3}{2},\dfrac {y_1+y_3}{2}\right)

\qquad\qquad\sf {:}\longrightarrow F=\left (\dfrac {x_1+x_2}{2},\dfrac {y_1+y_2}{2}\right)

Here,

G is the centroid of the triangle

As we know that,

At centroid three medians intersect each other in the ratio of 2:1.

Thus,

Over AD median,

\qquad\qquad\sf {:}\longrightarrow G=\left (\dfrac {\dfrac {2 (x_2+x_3)}{2}+1 (x_1)}{2+1},\dfrac {\dfrac {2 (y_2+y_3)}{2}+1 (y_1)}{2+1}\right)

\qquad\qquad\sf {:}\longrightarrow G=\left(\dfrac {x_2+x_3+x_1}{3},\dfrac {y_2+y_3+y_1}{3}\right)

\qquad\qquad\sf {:}\longrightarrow G=\left (\dfrac {x_1+x_2+x_3}{3},\dfrac {y_1+y_2+y _3}{3}\right)

Over BE median,

\qquad\qquad\sf {:}\longrightarrow G=\left (\dfrac {\dfrac {2 (x_1+x_3)}{2}+1 (x_2)}{2+1},\dfrac {\dfrac {2 (y_1+y_3)}{2}+1 (y_2)}{2+1}\right)

\qquad\qquad\sf {:}\longrightarrow G=\left (\dfrac {\dfrac {2 (x_1+x_3)}{2}+x_2}{2+1},\dfrac {\dfrac {2 (y_1+y_3)}{2}+y_2}{2+1}\right)

\qquad\qquad\sf {:}\longrightarrow G=\left (\dfrac {x_1+x_2+x_3}{3},\dfrac {y_1+y_2+y _3}{3}\right)

Over CF median,

\qquad\qquad\sf {:}\longrightarrow G=\left (\dfrac {\dfrac {2 (x_1+x_2)}{2}+1 (x_3)}{2+1},\dfrac {\dfrac {2 (y_1+y_2)}{2}+1 (y_3)}{2+1}\right)

\qquad\qquad\sf {:}\longrightarrow G=\left (\dfrac {\dfrac {2 (x_1+x_2)}{2}+x_3}{2+1},\dfrac {\dfrac {2 (y_1+y_2)}{2}+y_3}{2+1}\right)

\qquad\qquad\sf {:}\longrightarrow G=\left (\dfrac {x_1+x_2+x_3}{3},\dfrac {y_1+y_2+y _3}{3}\right)

_________________________________

Here,

We see that over All three medians AD,BE,CF

\qquad\qquad\sf {:}\longrightarrow G=\left (\dfrac {x_1+x_2+x_3}{3},\dfrac {y_1+y_2+y _3}{3}\right)

Hence

All three medians Namely AD,BE,CF pas s through a Single Dot(G)

Hence Proved


Anonymous: Just spledid ♥️ (:
Mister360: Thank you :)
NewGeneEinstein: welcome :)
NewGeneEinstein: Thank you :)
ItzArchimedes: Awesome !
NewGeneEinstein: Thanks sesu bro :)
Similar questions