Physics, asked by Alexander2384, 6 months ago


 \sf {\bold  {\underline{find \: density \: of \: cube}}} \:  \\  \\  \sf \: where \: mass \:  =  \small6 \frac{+}{-} 0.3kg \\  \\  \sf \: and \: volume \:  =  \small{ \sf{ \rm{ \pink{2 \frac{ + }{ - } 0.2kgl ^{ - 3} }}}}

Answers

Answered by Anonymous
3

Explanation:

\sf\large\underline\purple{Given:-}

     { \rm{ \implies{mass \: of \: cube \:  = 6 \frac{ + }{ - } 0.3kg}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  { \rm{ \implies{volume \: of \: cube \:  = 2 \frac{ + }{ - } 0.2kg {l}^{ - 3} }}}

\sf\large\underline\purple{Solution:-}

  \displaystyle \sf \longrightarrow \: \small{\sf{ \green{ \boxed{density =  \frac{mass}{volume} }}}} \:  \\  \\  \displaystyle \longrightarrow \small{ \rm{ \pink{density =  \frac{6}{2}  = 3kg {l}^{ - 3} }}}   \\  \\

\sf\large\underline\purple{Find error:-}

 \displaystyle \longrightarrow  \sf{ \bold{ \boxed{  \frac{ \delta \: d}{d}  = \frac{ \delta \: m}{m}  + \frac{ \delta \: v}{v}}}} \:  \:  \:  \\  \\  \displaystyle \sf \longrightarrow \:  \delta \: d \:  =  (\frac{ \delta \: m}{m} + \frac{ \delta \: v}{v})d\\  \\  \displaystyle \sf \longrightarrow \:  \delta \: d \:  =  0.45  \\  \\  \\  \sf \:\bigstar\: density \:  = 3 \frac{ + }{ - } 0.45

Similar questions