Answers
Step-by-step explanation:
LHS:
Expand the fractions using (a+b+c)²=a²+b²+c²+2ab+2bc+2ca.
Rearrange the terms.
We know that cos²A+sin²A=1.
Now here, take -2cos common from the numerator and +2cos common from the denominator.
Now, rearrange the terms, add 1 and 1 and take 2 common.
Take 2 common.
LHS=RHS.
HENCE PROVED!
FUNDAMENTAL TRIGONOMETRIC RATIOS:
T-RATIOS:
Answer:
Basic Trigonometric Identities for Sine and Cos
cos
2
(
A
)
+
sin
2
(
A
)
=
1
If A + B = 180° then:
sin
(
A
)
=
sin
(
B
)
cos
(
A
)
=
−
cos
(
B
)
If A + B = 90° then:
sin
(
A
)
=
cos
(
B
)
cos
(
A
)
=
sin
(
B
)
Half-angle formulas
sin
(
A
2
)
=
√
±
1
−
cos
(
A
)
2
If
A
2
lies in quadrant I or II
If
A
2
lies in quadrant III or IV
cos
(
A
2
)
=
√
±
1
+
cos
(
A
)
2
If
A
2
lies in quadrant I or IV
If
A
2
lies in quadrant II or III
Double and Triple Angle Formulas
sin
2
A
=
2
sin
A
cos
A
cos
2
A
=
cos
2
A
–
sin
2
A
=
2
cos
2
–
1
=
1
−
sin
2
A
sin
3
A
=
3
sin
A
–
4
sin
3
A
cos
3
A
=
4
cos
3
A
–
3
cos
A
sin
4
A
=
4
cos
3
A
sin
A
–
4
cos
A
sin
3
A
cos
4
A
=
cos
4
A
–
6
cos
2
A
sin
2
A
+
sin
4
A
sin
2
A
=
1
–
cos
(
2
A
)
2
cos
2
A
=
1
+
cos
(
2
A
)
2
Sum and Difference of Angles
sin
(
A
+
B
)
=
sin
(
A
)
cos
(
B
)
+
cos
(
A
)
sin
(
B
)
sin
(
B
)
sin
(
A
−
B
)
=
sin
(
A
)
cos
(
B
)
−
cos
(
A
)
sin
(
B
)
cos
(
A
+
B
)
=
cos
(
A
)
cos
(
B
)
−
sin
(
A
)
sin
(
B
)
cos
(
A
−
B
)
=
cos
(
A
)
cos
(
B
)
+
sin
(
A
)
sin
(
B
)
sin
(
A
+
B
+
C
)
=
sin
A
cos
B
cos
C
+
cos
A
sin
B
cos
C
+
cos
A
cos
B
sin
C
−
sin
A
sin
B
sin
C
cos
(
A
+
B
+
C
)
=
cos
A
cos
B
cos
C
−
sin
A
sin
B
cos
C
−
sin
A
cos
B
sin
C
−
sin
A
cos
B
sin
C
−
cos
A
sin
B
sin
C
sin
A
+
sin
B
=
2
sin
(
A
+
B
)
2
cos
(
A
−
B
)
2
sin
A
–
sin
B
=
2
sin
(
A
−
B
)
2
cos
(
A
+
B
)
2
cos
A
+
cos
B
=
2
cos
(
A
+
B
)
2
(
A
+
B
)
2
cos
(
A
−
B
)
2
cos
A
+
cos
B
=
−
2
sin
(
A
+
B
)
2
sin
(
A
−
B
)
2
Product Identities
sin
(
x
)
cos
(
y
)
=
1
2
[
sin
(
x
+
y
)
+
sin
(
x
–
y
)
]
cos
(
x
)
sin
(
y
)
=
1
2
[
sin
(
x
+
y
)
–
sin
(
x
–
y
)
]
cos
(
x
)
cos
(
y
)
=
1
2
[
cos
(
x
–
y
)
+
cos
(
x
+
y
)
]
sin
(
x
)
sin
(
y
)
=
1
2
[
cos
(
x
–
y
)
–
cos
(
x
+
y
)