Math, asked by Anonymous, 5 months ago

\sf \bullet \ \ \dfrac{(1+sinA-cosA)^2}{(1+sinA+cosA)^2} = \dfrac{1-cos}{1+cos}

Answers

Answered by Anonymous
18

Step-by-step explanation:

\LARGE{\bf{\underline{\underline\color{blue}{GIVEN:-}}}}

\sf \bullet \ \ \dfrac{(1+sinA-cosA)^2}{(1+sinA+cosA)^2} = \dfrac{1-cos}{1+cos}

\LARGE{\bf{\underline{\underline\color{blue}{SOLUTION:-}}}}

LHS:

\sf \to \dfrac{(1+sinA-cosA)^2}{(1+sinA+cosA)^2}→

Expand the fractions using (a+b+c)²=a²+b²+c²+2ab+2bc+2ca.

\sf \to \dfrac{(cos^2-2sincos+sin^2-2cos+2sin+1)}{(cos^2+2sincos+sin^2+2cos+2sin+1)}→

Rearrange the terms.

\sf \to \dfrac{(cos^2+sin^2-2sincos-2cos+2sin+1)}{(cos^2+sin^2+2sincos+2cos+2sin+1)}→

We know that cos²A+sin²A=1.

\sf \to \dfrac{1-2sincos-2cos}{2sin+1}→

Now here, take -2cos common from the numerator and +2cos common from the denominator.

\sf \to \dfrac{1-2cos(sin+2)}{2sin+1}→

Now, rearrange the terms, add 1 and 1 and take 2 common.

 \to\sf\dfrac{1+1+2sin-2cos}{sin+1}→

\to\sf\dfrac{2+2sin-2cos}{sin+1}→

Take 2 common.

\to \sf \dfrac{ 2(1+sin) -2cos(sin+1) }{ 2(1+sin) + 2cos(sin +1 ) }→

\to \sf{\red{\dfrac{1-cosA}{1+cosA} }}→ </p><p>

LHS=RHS.

HENCE PROVED!

FUNDAMENTAL TRIGONOMETRIC RATIOS:

\begin{gathered}\begin{gathered}\boxed{\substack{\displaystyle \sf sin^2 \theta+cos^2 \theta = 1 \\\\ \displaystyle \sf 1+cot^2 \theta=cosec^2 \theta \\\\ \displaystyle \sf 1+tan^2 \theta=sec^2 \theta}}\end{gathered}\end{gathered}

T-RATIOS:

\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &amp; \bf{0}^{ \circ} &amp; \bf{30}^{ \circ} &amp; \bf{45}^{ \circ} &amp; \bf{60}^{ \circ} &amp; \bf{90}^{ \circ} \\ \\ \rm sin A &amp; 0 &amp; \dfrac{1}{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{ \sqrt{3} }{2} &amp;1 \\ \\ \rm cos \: A &amp; 1 &amp; \dfrac{ \sqrt{3} }{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{1}{2} &amp;0 \\ \\ \rm tan A &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp; 1 &amp; \sqrt{3} &amp; \rm Not \: De fined \\ \\ \rm cosec A &amp; \rm Not \: De fined &amp; 2&amp; \sqrt{2} &amp; \dfrac{2}{ \sqrt{3} } &amp;1 \\ \\ \rm sec A &amp; 1 &amp; \dfrac{2}{ \sqrt{3} }&amp; \sqrt{2} &amp; 2 &amp; \rm Not \: De fined \\ \\ \rm cot A &amp; \rm Not \: De fined &amp; \sqrt{3} &amp; 1 &amp; \dfrac{1}{ \sqrt{3} } &amp; 0 \end{array}}}\end{gathered}\end{gathered}

Answered by shinchen08
26

Answer:

Basic Trigonometric Identities for Sine and Cos

cos

2

(

A

)

+

sin

2

(

A

)

=

1

If A + B = 180° then:

sin

(

A

)

=

sin

(

B

)

cos

(

A

)

=

cos

(

B

)

If A + B = 90° then:

sin

(

A

)

=

cos

(

B

)

cos

(

A

)

=

sin

(

B

)

Half-angle formulas

sin

(

A

2

)

=

±

1

cos

(

A

)

2

If

A

2

lies in quadrant I or II

If

A

2

lies in quadrant III or IV

cos

(

A

2

)

=

±

1

+

cos

(

A

)

2

If

A

2

lies in quadrant I or IV

If

A

2

lies in quadrant II or III

Double and Triple Angle Formulas

sin

2

A

=

2

sin

A

cos

A

cos

2

A

=

cos

2

A

sin

2

A

=

2

cos

2

1

=

1

sin

2

A

sin

3

A

=

3

sin

A

4

sin

3

A

cos

3

A

=

4

cos

3

A

3

cos

A

sin

4

A

=

4

cos

3

A

sin

A

4

cos

A

sin

3

A

cos

4

A

=

cos

4

A

6

cos

2

A

sin

2

A

+

sin

4

A

sin

2

A

=

1

cos

(

2

A

)

2

cos

2

A

=

1

+

cos

(

2

A

)

2

Sum and Difference of Angles

sin

(

A

+

B

)

=

sin

(

A

)

cos

(

B

)

+

cos

(

A

)

sin

(

B

)

sin

(

B

)

sin

(

A

B

)

=

sin

(

A

)

cos

(

B

)

cos

(

A

)

sin

(

B

)

cos

(

A

+

B

)

=

cos

(

A

)

cos

(

B

)

sin

(

A

)

sin

(

B

)

cos

(

A

B

)

=

cos

(

A

)

cos

(

B

)

+

sin

(

A

)

sin

(

B

)

sin

(

A

+

B

+

C

)

=

sin

A

cos

B

cos

C

+

cos

A

sin

B

cos

C

+

cos

A

cos

B

sin

C

sin

A

sin

B

sin

C

cos

(

A

+

B

+

C

)

=

cos

A

cos

B

cos

C

sin

A

sin

B

cos

C

sin

A

cos

B

sin

C

sin

A

cos

B

sin

C

cos

A

sin

B

sin

C

sin

A

+

sin

B

=

2

sin

(

A

+

B

)

2

cos

(

A

B

)

2

sin

A

sin

B

=

2

sin

(

A

B

)

2

cos

(

A

+

B

)

2

cos

A

+

cos

B

=

2

cos

(

A

+

B

)

2

(

A

+

B

)

2

cos

(

A

B

)

2

cos

A

+

cos

B

=

2

sin

(

A

+

B

)

2

sin

(

A

B

)

2

Product Identities

sin

(

x

)

cos

(

y

)

=

1

2

[

sin

(

x

+

y

)

+

sin

(

x

y

)

]

cos

(

x

)

sin

(

y

)

=

1

2

[

sin

(

x

+

y

)

sin

(

x

y

)

]

cos

(

x

)

cos

(

y

)

=

1

2

[

cos

(

x

y

)

+

cos

(

x

+

y

)

]

sin

(

x

)

sin

(

y

)

=

1

2

[

cos

(

x

y

)

cos

(

x

+

y

)

]

Similar questions