Math, asked by Anonymous, 1 year ago

\sf{Chapter:} Inverse Trigonometric Functions

\sf{Class:} 12th

\sf{Note:} By Substitution Method​

Attachments:

Answers

Answered by Anonymous
4

Hey there❤

Refer to attachment

Attachments:
Answered by siddhartharao77
13

Step-by-step explanation:

(i)

Given:\lim_{x \to a} \frac{\sqrt{tanx} - \sqrt{tana}}{x - a}

On rationalizing the numerator, we get

=\frac{\sqrt{tanx} - \sqrt{tana}}{x - a}*\frac{\sqrt{tanx}+\sqrt{tana}}{\sqrt{tanx} +\sqrt{tana}}

=\frac{tanx-tana}{(x-a)(\sqrt{tanx} + \sqrt{tana})}

\boxed{tanA - tanB = tan(A - B)[1 +tanAtanB]}

=\frac{tan(x-a)(1+tanxtana)}{(x-a)(\sqrt{tanx} + \sqrt{tana})}

=\lim_{x \to a} \frac{1+tanatana}{\sqrt{tana} + \sqrt{tana}}

=\frac{1+tan^2a}{2\sqrt{tana}}

=\frac{sec^2a}{2\sqrt{tana} }

(ii)

Given:\lim_{x \to 2} \frac{x^2 - x - 2}{x^3 - 7}

=\frac{2^2-2-2}{2^3-7}

=\frac{4-2-2}{8-7}

=\frac{0}{1}

=0

Hope it helps!

Similar questions