Math, asked by universalman122, 3 months ago


\sf \dfrac {2x+5}{3x-3}=\dfrac {5x+8}{4x-5} \ltexts {Solve\:it}
answer only if u..give it correct please..​

Answers

Answered by TheDiamondBoyy
20

⠀⠀{\rm{\pink{\underline{\underline{★Answer★}}}}}

{\rm{\red{\underline{\underline{Given\: Equation : }}}}}

\rm\dfrac {2x+5}{3x-3}=\dfrac {5x+8}{4x-5}

{\rm{\purple{\underline{\underline{Solution}}}}}

\rm\dfrac {2x+5}{3x-3}=\dfrac {5x+8}{4x-5}

Cross multiplying the terms, we get :-

  \longrightarrow\rm4x - 5(2x + 5) = 3x - 3(5x + 8)

\longrightarrow\rm 8x {}^{2}   + 20x - 10 {x}^{} - 25 = 15x {}^{2}  + 24x - 15x - 24

\longrightarrow\rm 8x {}^{2}  + 10x - 25 = 15x {}^{2}  + 9x - 24

Taking all the terms to the L.H.S, we get :-

\longrightarrow\rm 8x {}^{2}  - 15x {}^{2}  + 10x - 9x - 25 + 24 = 0

\longrightarrow\rm  - 7x {}^{2}  + x - 1 = 0

Multiplying all the terms by ( - ), we get :-

\longrightarrow\rm  - ( - 7x {}^{2}  + x - 1) = 0

\longrightarrow\rm 7x {}^{2}  - x + 1 = 0

By using the quadratic equation, we get :-

\longrightarrow\rm x =    \frac{- b± \sqrt{} (b {}^{2}  - 4ac)}{2a}

Here,

a = 7

b = 1

c = 1

Now, substituting the values,

\longrightarrow\rm x =  \frac{  - 1± \sqrt{} [( 1) {}^{2}  - 4 \times 7 \times 1]}{2(7)}7

\longrightarrow\rm x =  \frac{ - 1 ±\sqrt{1 - 28} }{14}

\longrightarrow\rm x =   \frac{ - 1 \:  ±\sqrt{} -  27}{14}

No real solutions because the discriminant is negative.

RESULT:- NO SOLUTION

Answered by kimtaehyung1730
1

Answer: click on the above page will got your answer

Attachments:
Similar questions