Science, asked by Janvi778, 3 months ago

\sf\dfrac{cos\theta+1-sin\theta}{cos\theta-1+sin\theta}=\dfrac{1+sin\theta}{cos\theta}

Need prove!! ​

Answers

Answered by AestheticSky
11

{\underline{\underline{\bf Given}}}

\sf\dfrac{cos\theta+1-sin\theta}{cos\theta-1+sin\theta}

{\underline{\underline{\bf To\:prove}}}

\sf \dfrac{1+sin\theta}{cos\theta}

{\underline{\underline{\bf Solution}}}

Note:- I've used (X) instead of Ø

 \implies \sf  \dfrac{ \dfrac{ \sin(x) -  \cos(x)  + 1 }{ \cos(x) } }{ \dfrac{ \sin(x)  +  \cos(x)  - 1}{ \cos(x) } }  \\  \\ \implies\sf \frac{ \tan(x)   -  1 +  \sec(x) }{ \tan(x) -  \sec(x) + 1  }  \\  \\  \implies\sf \frac{ \tan(x)  +  \sec(x)  -( \sec^{2} (x)  -  \tan^{2} (x) )}{\tan(x) -  \sec(x) + 1}  \\  \\ \implies \sf \frac{ \tan(x) +  \sec(x)  - ( \sec(x)  +  \tan(x) )( \sec(x) -  \tan(x)  )}{\tan(x) -  \sec(x) + 1}  \\  \\  \implies\sf \frac{ \tan(x)  +  \sec(x)(\cancel{ tan(x) -  \sec(x) + 1)} }{\cancel{tan(x) -  \sec(x) + 1}}  \\  \\  \implies\sf \tan(x)  +  \sec(x)  \\  \\ \implies \sf \frac{ \sin(x) }{ \cos(x) }  +  \frac{1}{ \cos(x) }  =  \frac{1 +  \sin(x) }{ \cos(x) }

{\underline{\underline{\bf Identities\:used}}}

\underline\pink{\boxed{\bf sec²\theta-tan²\theta=1}}

\underline\green{\boxed{\bf a²-b²=(a+b)(a-b)}}

Similar questions