Math, asked by ShivajiMaharaj45, 11 months ago

\sf Differentiate \: the \:following \:function \:w.r.t \: x


\sf log ( {a}^{4x} {(\frac{x-5} {x+4})}^{\frac{3}{4}})



\sf The \: Answer \: is \: 4log a + \frac {3}{4 (x-5)} - \frac{3}{4 (x+4)}



\sf ContentQualityAnswerRequired


\sf Thanks \:Godslayer007\: and\: debismita\: for \:answer

Answers

Answered by rishu6845
13

Answer--->

dy/dx = 4loga + 3/ { 4 ( x - 5 ) }- 3/ {4 ( x + 4 ) }

Step-by-step explanation:

Given---->

log { a⁴ˣ ( x - 5 / x + 4 )³/⁴ }

To find----> Derivative of given function

Solution----> 1) Plzz see the attachment

2) We know that ,

a) log ( m n ) = logm + logn

b) log ( m/n ) = logm - logn

c) log mⁿ = n logm

3) Applying these properties of log we get,

y = 4x loga + 3/4 log ( x - 5 ) - 3/4 log ( x + 4 )

4) Differentiating with respect to x and applying some formulee of differetiation as follows,

d/dx ( x ) = 1

d/dx ( logx ) = 1/x

we get the answer

Attachments:
Answered by Anonymous
33

Solution

\sf The \: Answer \: is \: 4log a + \dfrac {3}{4 (x-5)} - \dfrac{3}{4 (x+4)}

Given

\sf Let \ y = log ( {a}^{4x} {(\dfrac{x-5} {x+4})}^{\frac{3}{4}})

To finD

Derivative of y

Now,

\sf y = log ( {a}^{4x} {(\dfrac{x-5} {x+4})}^{\dfrac{3}{4}}) \\  \\  \longrightarrow \:  \sf \: y =( log \:  {a}^{4x} ) + \bigg(log \:( \dfrac{x - 5}{x + 4} ){}^{ \frac{3}{4} }    \bigg)

 \longrightarrow \: \sf \:y =   \: 4x(log \: a) +  \dfrac{3}{4}  \{log \: ( \dfrac{x - 5}{x + 4}  )\} \\  \\  \longrightarrow \:  \sf \: y = 4x(log \: a) + \bigg( \:  \dfrac{3}{4} log(x - 5) -  \dfrac{3}{4} log(x + 4) \bigg)

Differentiating y with respect to x,we get :

 \longrightarrow \:  \sf \: y' =  \dfrac{d(4 x\: log \: a )}{dx}  +  \dfrac{3}{4}  \times  \dfrac{d( log( x - 5)) }{dx}  -  \dfrac{3}{4}  \times  \dfrac{d( log(x + 4)) }{dx}  \\  \\  \longrightarrow \:  \sf \: y' = \bigg( 4 log(a)  \times  \dfrac{dx}{dx}   \bigg)+   \bigg(\dfrac{3}{4} \times  \dfrac{1}{x - 5}  \bigg) -  \bigg( \dfrac{3}{4}  \times  \dfrac{1}{x + 4}  \bigg) \\  \\   \longrightarrow \boxed{ \boxed{  \sf \: y' = 4 log(a)  +  \dfrac{3}{4(x + 5)}  -  \dfrac{3}{4(x - 4)} }}

Note

  • log(ab) = log(a) + log(b)

  • log(a/b) = log(a) - log(b)

  • log(aⁿ) = n log(a)

  • d(log x)/dx = 1/x
Similar questions