___________...
Class IX
Chapter : Factorisation of polynomials...
Answers
Solution :
(-x+5y)(19x²-10xy+7y²)
Step by step explanation :
We have to factorize
We know that
It is the required solution!
Algeberaic Indentities :
Answer:-
To Factorise: 8(x + y)³ - 27(x - y)³
8(x + y)³ - 27(x - y)³
= (2)³(x + y)³ - (3)³(x - y)³
= (2x + 2y)³ - (3x - 3y)³
[∵ xⁿ × yⁿ = (xy)ⁿ]
= [(2x + 2y) - (3x - 3y)] • [(2x + 2y)² + (2x + 2y)(3x - 3y) + (3x - 3y)²]
[∵ a³ - b³ = (a - b)(a² + ab + b²)]
= [2x + 2y - 3x + 3y] • {[(2x)² + 2(2x)(2y) + (2y)²] + [2x(3x - 3y) + 2y(3x - 3y)] + [(3x)² - 2(3x)(3y) + (3y)²]}
= (- x + 5y) • [(4x² + 8xy + 4y²) + (6x² - 6xy + 6xy - 6y²) + (9x² - 18xy + 9y²)]
= (- x + 5y) • (4x² + 8xy + 4y² + 6x² - 6xy + 6xy - 6y² + 9x² - 18xy + 9y²)
= (- x + 5y)(19x² - 10xy + 7y²)
∴ Factorised form of [8(x + y)³ - 27(x - y)³] is [(- x + 5y)(19x² - 10xy + 7y²)].
More:-
Anu, we used the factor finding formula of (a³ - b³) here, i.e. (a - b)(a² + ab + b²). But the value finding formula here is = (a + b)³ - 3ab(a + b).