Math, asked by Anonymous, 5 hours ago

 \sf \: Find \: the \: general \: limit \: of \: the \: following \: function : \\ \sf \: lim_{x \to \: 9} (x² + 2^7 + (9.1 × 10))

Answers

Answered by ItzAdityaKarn
1

Solution:-

9( {x}^{2}  +  {2}^{7}  + (9.1 \times 10)

⟹  \: 9( {x}^{2}  +  {2}^{7}  + 91.0)

⟹ \: 9 \times  {x}^{2}  + 9 \times  {2}^{7}  + 9 \times 91

⟹ \: 9 {x}^{2}  + 9 \times 128 + 819

⟹ \: 9 {x}^{2}  + 1152 + 819

⟹ \: 9 {x}^{2}  + 1971

Hope it helps!

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: \displaystyle \lim_{x \to \: 9} [ {x}^{2}  + 2^7 + (9.1 × 10)]

Let us first evaluate the Left Hand Limit

\rm :\longmapsto\: \displaystyle \lim_{x \to \: 9^ - } [ {x}^{2}  + 2^7 + (9.1 × 10)]

To evaluate this, we have to use method of Substitution.

So, Substitute

 \red{\rm :\longmapsto\:x = 9 - h \:  \: as \: x \to \: 9 \:  \: so \: h \to \: 0}

So, above expression can be rewritten as

 \rm \:  =  \: lim_{h \to \: 0} \bigg[ {(9 - h)}^{2}  + 128 + 91\bigg]

 \rm \:  =  \:  {(9 - 0)}^{2} + 219

 \rm \:  =  \:  81 + 219

 \rm \:  =  \:  300

\bf\implies \:  \displaystyle \lim_{x \to \: 9^ - } \bf [{x}^{2} + 2^7 + (9.1 × 10)]= 300

Now, Consider Right Hand Limit

\rm :\longmapsto\: \displaystyle \lim_{x \to \: 9^  + } [ {x}^{2}  + 2^7 + (9.1 × 10)]

To evaluate this limit, we use method of Substitution.

So, Substitute

 \red{\rm :\longmapsto\:x = 9  +  h \:  \: as \: x \to \: 9 \:  \: so \: h \to \: 0}

So, above expression can be rewritten as

 \rm \:  =  \: lim_{h \to \: 0} \bigg[ {(9 +  h)}^{2}  + 128 + 91\bigg]

 \rm \:  =  \:  {(9  +  0)}^{2} + 219

 \rm \:  =  \: 81 + 219

 \rm \:  =  \: 300

\bf\implies \:  \displaystyle \lim_{x \to \: 9^ + } \bf [{x}^{2} + 2^7 + (9.1 × 10)]= 300

So, we concluded that

\boxed{\tt{ \displaystyle \lim_{x \to 9^ + } \sf [{x}^{2} + 2^7 + (9.1 × 10)] = \lim_{x \to 9^ - } \sf [{x}^{2} + 2^7 + (9.1 × 10)]}}

Hence,

\sf\implies\boxed{\tt{ \displaystyle \lim_{x \to 9} \sf [{x}^{2} + 2^7 + (9.1 × 10)]  = 300}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

EXPLORE MORE

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1 \: }}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1 \: }}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1 \: }}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1 \: }}

\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga \: }}

Similar questions