Math, asked by ItzYourSadness, 17 days ago

\sf{{How \: to \: evaluate \: the \: integral \: from \: 0 \: to \: \frac{\pi}{4} \: of}{ \: \: \frac{1 \: + \: {cos}^{2} x }{ {cos}^{2} x } dx \: \: ?}}

No spamming..!​

Answers

Answered by MissBakwas
17

\sf\underline{ \underline{\: Solution: }{}}

\sf{{ ⟼ \:  {∫}^{ \frac{\pi}{4} }  _{0}  \frac{1 +  {cos}^{2}(x) }{ {cos}^{2}(x) }    }{  dx}}

\sf{{⟼ \: {∫}^{ \frac{\pi}{4} }  _{0}  \frac{2  \: +   \: {cos}^{2}(x)  \: - 1 }{ {cos}^{2}(x) }dx  }{ \: }}

Factorize :

\sf{{⟼ \:  {∫}^{ \frac{\pi}{4} }  _{0} \frac{ - (1  \: -  \:  {cos}^{2} (x))  \: +  \: 2}{ {cos}^{2}(x) } dx  }{ \: }}

\sf{{⟼ \: {∫}^{ \frac{\pi}{4} }  _{0}  \frac{  -  \: {sin}^{2}(x) + 2 }{ {cos}^{2}(x) } dx  }{ \: }}

\sf{{⟼ \:   - {∫}^{ \frac{\pi}{4} }  _{0}  \frac{ {sin}^{2}(x) }{ {cos}^{2}(x) }dx  +  \: 2{∫}^{ \frac{\pi}{4} }  _{0} \frac{1}{ {cos}^{2} }dx  }{ \: }}

\sf{{⟼ \:  -  {∫}^{ \frac{\pi}{4} }  _{0} \: 1 \:  + \: {tan}^{2} (x) - 1dx \:  +  \: 2{∫}^{ \frac{\pi}{4} }  _{0}  \frac{1}{ {cos}^{2}(x) } dx \:  }{ \: }}

\sf{{ ⟼ \:  - (tan(x) - x){⌉}^{ \frac{\pi}{4} }  _{0}   \:+ \:  2 (tan(x)){⌉}^{ \frac{\pi}{4} }  _{0} \:  }{ \: }}

⟼ \:  - 1  +  \: \frac{\pi}{4}  + 2

⟼ \: 1  \: +  \:  \frac{\pi}{4}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Hope that helps! :)

Answered by Saachu71
0

Answer:

hey!!

actually wanted your help a bit

do u know (itzofficialAshu)?

Similar questions