Math, asked by brainly218, 1 year ago

 \sf If \: a^4 \: + \: b^4 \: + \: c^4 \: + \: d^4 \: = \: 4abcd

\sf Prove \: that \: !!

\sf \implies a \: = \: b \: = \: c \: = \: d

Answers

Answered by vhpsharitha
3
Hey, mate,!!

Here's your answer,....

I am sorry, but I don't know the procedure method,....

But I know the substitution,....

U can substitute any value of a,b,c,d satisfying the condition,.. a=b=c=d

For example, I take abcd values as 2, it becomes

16+16+16+16=4×2×2×2×2
64 =4×16
64=64

Hope it helped you,....
if u wish u can mark me as the brainliest,...only if it has helped you,....
Answered by Anonymous
58

\underline{\underline{\mathfrak{\Large{Solution : }}}}



\underline{\textsf{Given,}} ,\\ \\ \sf \implies a^4 \: + \: b^4 \: + \: c^4 \: + \: d^4 \: = \: 4abcd





\underline{\mathsf{Subtract \: 2a^2b^2 \: and \: 2c^2d^2 \: from \: both \: sides , }} \\ \\ \sf \implies a^4 \: + \: b^4 \: +  \:  c^4 \: + \: d^4 \: - \: 2a^2b^2 \: - \: 2c^2d^2  \:  =  \: 4abcd \:  -  \: 2 {a}^{2}  {b}^{2}  \:  -  \: 2 {c}^{2}  {d}^{2}





\underline{\textsf{Rearranging the terms : }} \\ \\ \sf \implies a^4 \: + \: b^4 \: - \: 2a^2b^2 \: +  \: c^4 \: + \: d^4 \: - \: 2c^2d^2 \: = \: -2( a^2b^2 \: + \: c^2d^2 \: - \: 2abcd )  \\  \\  \\  \sf \implies \{( {a}^{2} )^{2}  \:  +  \: ( {b}^{2} )^{2}  \:  -  \: 2 {a}^{2}  {b}^{2}  \} \:  +  \: \{( {c}^{2} )^{2}  \:  +  \: ( {d}^{2} )^{2}  \:  -  \: 2 {c}^{2}  {d}^{2}  \} \:  =  \:  - 2 \{(ab)^{2}  \:  +  \: (cd)^{2}  \:  -  \: 2abcd \} \\  \\  \\  \sf \implies( {a}^{2}  \:  -  \:  {b}^{2} )^{2}  \:  +  \: ( {c}^{2}  \:  -  \:  {d}^{2} )^{2}  \:  =  \:  - 2(ab \:  -  \: cd)^{2}  \\  \\  \\ \sf \implies( {a}^{2}  \:  -  \:  {b}^{2} )^{2}  \:  +  \: ( {c}^{2}  \:  -  \:  {d}^{2} )^{2}   \:   +  \:  2(ab \:  -  \: cd)^{2}  \:  = \:  0




\textsf{We know that square of any integer is always positive ,} \\  \textsf{so if above equation is true then : } \\ \\ \sf \implies (a^2 \: - \: b^2)^2 \: = \: 0  \\ \\ \sf \implies a^2 \: - \: b^2 \: = \: 0 \\ \\ \sf \implies a^2 \: = \: b^2 \\ \\ \sf \: \: \therefore \: \: a \: = \: b   \qquad...(1)\\ \\ \textsf{And,}  \\  \\ \sf \implies (c^2 \: - \: d^2)^2 \: = \: 0  \\ \\ \sf \implies c^2 \: - \: d^2 \: = \: 0 \\ \\ \sf \implies c^2 \: = \: d^2 \\ \\ \sf \: \: \therefore \: \: c \: = \: d  \qquad...(2) \\ \\ \textsf{Again,}  \\  \\  \sf \implies2(ab \:  -  \: cd) \:  =  \: 0 \\  \\  \sf \implies ab \:  -  \: cd \:  =  \: 0



\textsf{Plug the value of (1) and (2), } \\ \\ \sf \implies b^2 \: - \: d^2 \:  = \: 0 \\ \\ \sf \implies b^2 \: = \: d^2 \\ \\ \sf \: \: \therefore \: \: b \: = \: d \qquad...(3) \\ \\ \textsf{From (1) , (2) and (3) we get : } \\ \\ \sf \implies a \: = \: b \: = \: c \: = \: d




\underline{\underline{\textsf{\Large{Proved !! }}}}

ShuchiRecites: Marvelous answer :-)
BrainlyQueen01: Awesome answer :)
akp1772p7zfxr: Plzz vaibhav sir delete my account
kingArsh07: hi bhava inbox me
Similar questions