Answers
Hi there!
Here's the answer:
•°•°•°•°•°<><><<><>><><>°•°•°•°•°•
Given,
a⁴ + b⁴ + c⁴ + d⁴ = 4abcd
=> a⁴ + b⁴ + c⁴ + d⁴ - 4abcd = 0
--------------(1)
Add and subtract 2a²b² & 2c²d²
a⁴ + b⁴ + c⁴ + d⁴ - 2a²b² - 2c²d² +
2a²b² + 2c²d² - 4abcd = 0
Rearrange terms
=> (a⁴ + b⁴ - 2a²b²) + (c⁴ + d⁴ - 2c²d² ) - (2a²b² + 2c²d² - 4abcd) = 0
=> (a² - b²)² + (c² - d²)² +2(a²b² + c²d² - 2abcd) = 0
=> (a² - b²)² + (c² - d²)² +2(ab - cd)² = 0
---------------(2)
As when a term is squared, the No. is always positive.
a² - b² = 0 & c² - d² = 0 & ab - cd = 0
=> a² = b² & c² = d² & a/c = d/b
---------------(3)
Substitute in Eq.(1)
=> (a⁴ + c⁴ - 2a²c²) + (b⁴ + d⁴ - 2b²d² ) - (2a²c² + 2b²d² - 4abcd) = 0
=> (a⁴ + c⁴ - 2a²c²) + (b⁴ + d⁴ - 2b²d² ) - 2(a²c² + b²d² - abcd) = 0
=> (a² - c²)² + (b² - d²)² + 2(ac - bd)² = 0
Similar to earlier.
a² - c² = 0 & b² - d² = 0 & ac = bd
a² = c² & b² = d² & ac = bd
----------------(4)
From Eq(3) & Eq(4)
a = b = c = d
•°•°•°•°•°<><><<><>><><>°•°•°•°•°•
Hope it helps