Math, asked by Anonymous, 7 days ago

 \sf If \: sec  θ + tan θ = p \: then \: prove \: that :  -  \\  \\  \bigstar \boxed{\sf  sin \theta =  \frac{ {p}^{2} - 1 }{ {p}^{2} + 1 } }  \bigstar\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Thank you :) ​

Answers

Answered by mathdude500
20

\large\underline{\sf{Solution-}}

Given that,

\rm \: p = sec\theta  + tan\theta  \\

Now, Consider

\rm \: \dfrac{ {p}^{2} - 1 }{ {p}^{2}  + 1}  \\

On substituting the value of p, we get

\rm \: =  \: \dfrac{ {(sec\theta  + tan\theta )}^{2} - 1 }{ {(sec\theta  + tan\theta )}^{2}  + 1}  \\

We know,

\boxed{\sf{  \:(x + y)^{2}  =  {x}^{2} +  {y}^{2}  + 2xy \: }} \\

So, using this identity, we get

\rm \: =  \: \dfrac{ {sec}^{2} \theta  +  {tan}^{2}\theta  + 2sec\theta  \: tan\theta  \:  -  \: 1}{ {sec}^{2} \theta  +  {tan}^{2} \theta  + 2sec\theta  \: tan\theta  \:  +  \: 1}  \\

can be re-arranged as

\rm \: =  \: \dfrac{({sec}^{2} \theta - 1)  +  {tan}^{2}\theta  + 2sec\theta  \: tan\theta }{ {sec}^{2} \theta  +(  {tan}^{2} \theta + 1)  + 2sec\theta  \: tan\theta}  \\

We know that,

\boxed{\sf{  \: {sec}^{2}x -  {tan}^{2}x = 1 \: }} \\

So, using this, we get

\rm \: =  \: \dfrac{ {tan}^{2}\theta    +  {tan}^{2}\theta  + 2sec\theta  \: tan\theta }{ {sec}^{2} \theta  + {sec}^{2}  \theta + 2sec\theta  \: tan\theta}  \\

\rm \: =  \: \dfrac{ 2{tan}^{2}\theta  + 2sec\theta  \: tan\theta }{2{sec}^{2} \theta + 2sec\theta  \: tan\theta}  \\

\rm \: =  \: \dfrac{ 2tan\theta (tan\theta   + sec\theta) }{2sec\theta (sec\theta  +  tan\theta)}  \\

\rm \: =  \: \dfrac{tan\theta }{sec\theta }  \\

\rm \: =  \: \dfrac{sin\theta }{cos\theta }  \div \dfrac{1}{cos\theta }  \\

\rm \: =  \: sin\theta  \\

Hence,

\rm\implies \: \: \boxed{\sf{  \: \: \rm \: \dfrac{ {p}^{2} - 1 }{ {p}^{2}  + 1} \:  =  \: sin\theta  \:  \: }}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by talpadadilip417
5

Step-by-step explanation:

 \color{blue} \[ \begin{array}{l} \text {Sol. Given,}  \sec \theta+\tan \theta=p \\ \\   \tt  Now, \text { H.S. }=\dfrac{p^{2}-1}{p^{2}+1} \\  \\ \tt =\dfrac{(\sec \theta+\tan \theta)^{2}-1}{(\sec \theta+\tan \theta)^{2}+1} \\ \\  \tt =\dfrac{\sec ^{2} \theta+\tan ^{2} \theta+2 \sec \theta \tan \theta-1}{\sec ^{2} \theta+\tan ^{2} \theta+2 \sec \theta \tan \theta+1}   \\    \\  \qquad \qquad \qquad\tt[ \because \: (a + b) {}^{2} =  {a}^{2}   + 2ab +  {b}^{2} ]\\  \\  \tt =\dfrac{\left(\sec ^{2} \theta-1\right)+\tan ^{2} \theta+2 \sec \theta \tan \theta}{\sec ^{2} \theta+\left(1+\tan ^{2} \theta\right)+2 \sec \theta \tan \theta} \end{array} \]

 \tt \color{red}\begin{aligned}=& \frac{\tan ^{2} \theta+\tan ^{2} \theta+2 \sec \theta \tan \theta}{\sec ^{2} \theta+\sec ^{2} \theta+2 \sec \theta \tan \theta} \\ \\  & \qquad \qquad \qquad\left[\begin{array}{l}\because \sec ^{2} \theta-1=\tan ^{2} \theta \\ \sec ^{2} \theta=1+\tan ^{2} \theta\end{array}\right] \end{aligned}

 \color{purple}\[ \begin{array}{l} =\dfrac{2 \tan ^{2} \theta+2 \sec \theta \tan \theta}{2 \sec ^{2} \theta+2 \sec \theta \tan \theta} \\  \\ =\dfrac{2 \tan \theta(\tan \theta+\sec \theta)}{2 \sec \theta(\sec \theta+\tan \theta)} \\  \\ =\dfrac{\tan \theta}{\sec \theta} \\  \\ =\dfrac{\dfrac{\sin \theta}{\cos \theta}}{\cfrac{1}{\cos \theta}} \\  \\ =\sin \theta=\text { L.H.S. } \\   \\  \text{Hence Proved. }\end{array} \]

Similar questions