Math, asked by Anonymous, 8 months ago

\sf if \:tan \theta =-\dfrac{4}{3},then\:sin \theta \:is

Answers

Answered by Anonymous
80

Given:-

 \tan( \alpha )  =   - \frac { 4}{3}  \\

To find:-

 \sin( \alpha )  = ?

Solution:-

Now perpendicular = -4 and base = 3

(Hypotenuse)² = (perpendicular)²+(base)²

(Hypotenuse)² = 3²+4² = 9 + 16 = 25

Hypotenuse = √25 = 5

Hypotenuse = 5

 \sin( \alpha )  =   - \frac{4}{5}

Hope its help uh

Answered by AdorableMe
33

Given :-

\sf{tan\theta=-\dfrac{4}{3}}

To Find :-

The value of \sf{sin\theta}.

Solution :-

We know,

\boxed{\bf{tan\theta=\frac{perpendicular}{base}}}

\displaystyle \sf{\longmapsto tan\theta=-\frac{4}{3} }

∴ p = -4, b = 3

Using Pythagoras Theorem :-

h² = p² + b²

⇒ h = √[(-4)² + (3)²]

⇒ h = √(16 + 9)

⇒ h = √25

h = 5

We know,

\boxed{\bf{sin\theta=\frac{perpendicular}{hypotenuse}}}

\displaystyle \sf{\longmapsto sin\theta=-\frac{4}{5} }

Therefore, the answer is -4/5.

Similar questions