Math, asked by Anonymous, 3 months ago

\sf if \: y(\alpha)=\sqrt{2\bigg(\dfrac{tan\alpha+cot\alpha}{1+tan^2\alpha}\bigg) +\dfrac{1}{sin^2\alpha} } , \alpha \in \bigg(\dfrac{3\pi}{4},\pi\bigg) , then\: \dfrac{dy}{d\alpha} \: at\: \alpha=\dfrac{5\pi}{6}\: is

Answers

Answered by rajk123654987
4

Answer:

The Answer is -4.

Kindly refer to the attachment for the calculations.

Hope the answer is correct.

Attachments:
Answered by mathdude500
3

\large\underline{\bold{Given \:Question - }}

\sf if \: y(\alpha)=\sqrt{2\bigg(\dfrac{tan\alpha+cot\alpha}{1+tan^2\alpha}\bigg) +\dfrac{1}{sin^2\alpha} } , \\  \sf \: \alpha \in \bigg(\dfrac{3\pi}{4},\pi\bigg) , then\: \dfrac{dy}{d\alpha} \: at\: \alpha=\dfrac{5\pi}{6}\: is \:  \:  \:  \:  \:

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:y = \sqrt{2\bigg(\dfrac{tan\alpha+cot\alpha}{1+tan^2\alpha}\bigg) +\dfrac{1}{sin^2\alpha} }

\rm :\longmapsto\:y = \sqrt{2\bigg(\dfrac{tan\alpha+\dfrac{1}{tan \alpha } }{ \:  \: 1+tan^2\alpha \:  \: }\bigg) +\dfrac{1}{sin^2\alpha} }

\rm :\longmapsto\:y = \sqrt{2\bigg(\dfrac{\dfrac{ {tan}^{2} \alpha  +  1}{tan \alpha } }{ \:  \: 1+tan^2\alpha \:  \: }\bigg) +\dfrac{1}{sin^2\alpha} }

\rm :\longmapsto\:y = \sqrt{\bigg(\dfrac{2}{tan \alpha }{}\bigg) +\dfrac{1}{sin^2\alpha} }

\rm :\longmapsto\:y =  \sqrt{2cot \alpha  +  {cosec}^{2} \alpha  }

 \:  \:  \: \because \: \boxed{ \pink{\bf{\dfrac{1}{tanx} = cotx \: and \:  \dfrac{1}{sinx} = cosecx}}}

\rm :\longmapsto\:y =  \sqrt{2cot \alpha  + 1 +  {cot}^{2}  \alpha }

\rm :\longmapsto\:y =  \sqrt{(cot \alpha  + 1)^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \because \: \boxed{ \pink{\bf{ {x}^{2} +  {y}^{2} + 2xy =  {(x + y)}^{2}}}}

\rm :\implies\:y =  |1 + cot \alpha |

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \because \: \boxed{ \pink{\bf{ \sqrt{ {x}^{2}}  =  |x| }}}

\red{\sf\:As\:\alpha  \in \:\bigg(\dfrac{3\pi}{4},\pi \bigg) \: so \: cot \alpha  <  - 1 \implies \: 1 + cot \alpha  < 0}

\bf\implies \:y =  - (1 + cot \alpha )

Now, on differentiating both sides, we get

\rm :\longmapsto\:\dfrac{d}{d \alpha}y =  - \dfrac{d}{d \alpha}(1 + cot \alpha )

\rm :\longmapsto\:\dfrac{dy}{d \alpha}  =  - ( -  {cosec}^{2} \alpha)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \because \: \boxed{ \pink{\bf{\dfrac{d}{dx}cotx =  -  {cosec}^{2}x}}}

\rm :\longmapsto\:\dfrac{dy}{d \alpha}  ={cosec}^{2} \alpha

\rm :\longmapsto\:\dfrac{dy}{d \alpha} \bigg(\: at \:  \alpha  =\dfrac{5\pi}{6} \bigg) ={cosec}^{2}\dfrac{5\pi}{6}

\rm :\longmapsto\:\dfrac{dy}{d \alpha}\bigg( \: at \:  \alpha  =\dfrac{5\pi}{6}\bigg)={cosec}^{2}(\pi - \dfrac{\pi}{6})

\rm :\longmapsto\:\dfrac{dy}{d \alpha} \bigg(\: at \:  \alpha  =\dfrac{5\pi}{6} \bigg)     ={cosec}^{2}\dfrac{\pi}{6}

\rm :\longmapsto\:\dfrac{dy}{d \alpha} \: at \:   \bigg(\alpha  =\dfrac{5\pi}{6} \bigg)    = {(2)}^{2}  = 4

Hence,

\bf if \: y(\alpha)=\sqrt{2\bigg(\dfrac{tan\alpha+cot\alpha}{1+tan^2\alpha}\bigg) +\dfrac{1}{sin^2\alpha} } , \\  \bf \: \alpha \in \bigg(\dfrac{3\pi}{4},\pi\bigg) , then\: \dfrac{dy}{d\alpha} \: at\: \alpha=\dfrac{5\pi}{6}\: is \:4  \:  \:  \:  \:

Additional Information :-

\boxed{ \red{\bf{\dfrac{d}{dx}tanx =  {sec}^{2}x}}}

\boxed{ \red{\bf{\dfrac{d}{dx}cotx =   - {cosec}^{2}x}}}

\boxed{ \red{\bf{\dfrac{d}{dx}cosx =  - sinx}}}

\boxed{ \red{\bf{\dfrac{d}{dx}sinx = cosx}}}

\boxed{ \red{\bf{\dfrac{d}{dx}cosecx =  - cosecxcotx}}}

\boxed{ \red{\bf{\dfrac{d}{dx}secx = secxtanx}}}

Attachments:
Similar questions