Math, asked by ObnoxiousS, 5 days ago

 \sf  \large  \dag  \:  \underbrace{ Question :- }


Calculate the amount and the compound interest on ₹ 17000 in 3 years when the rate of interest for successive years is 10%, 10% and 14%, respectively.

 \sf \longrightarrow \: dont \: spam

Thank you for the answers!~​

Answers

Answered by ItzHannu001
84

Answer:

Given:-

  • Principal = 17000 (P)
  • Time period= 3 yrs (n)
  • Rate of interest for successive years = 10%, 10% and 14% respectively (r)

To find:-

  • Amount and compound interest

First we find amount

 \tt \large A = p ({1 +  \frac{r}{100} })^{n}

Substituting the values in above formula

 \tt  \implies A = 17000(1 +  \frac{10}{100} )(1 +  \frac{10}{100} )(1 +  \frac{14}{100} )

 \tt \implies A \:  = 17000 \times  \frac{11}{10}  \times  \frac{11}{10}  \times  \frac{57}{50}  \\  \tt{ \red{ \boxed {A =  23449.8 \:  \:  \:  \: rupees}}}

Then we have to find compound interest

As we know that,

C.I. = Amount - Principal

C.I. = 23449.8 - 17000

C.I. = 6449.80

So,

  • Amount= ₹23449.80
  • Compound interest= 6449.80

Answered by Anonymous
94

Given : A Sum of Rs.17000 in 3 years at the rate for Successive years is 10 % , 10 % and 14 % .

 \\ \\

To Find : Find the Amount and Compound Interest

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN : As the Rate is Successive .So, we'll apply the formula Compound Interest at Successive rate . Let's Solve :

 \\ \\

 \maltese Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ A = P \bigg( 1 + \dfrac{R}{100} \bigg)^n }}}}}

  •  {\underline{\boxed{\pmb{\sf{ C.I = Amount - Principal }}}}}

Where :

  • A = Amount
  • P = Principal
  • R = Rate
  • n = Time
  • C.I = Compound Interest

 \\ \\

 \maltese Calculating the Amount :

 \begin{gathered} \dashrightarrow \; \; \sf { A = P \bigg( 1 + \dfrac{R}{100} \bigg)^n } \\ \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { A = P \bigg( 1 + \dfrac{R}{100} \bigg)^1 \times \bigg( 1 \times \dfrac{R}{100} \bigg)^1 \times \bigg( 1 + \dfrac{R}{100} \bigg)^1 } \\ \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { A = 17000 \bigg( 1 + \dfrac{10}{100} \bigg)^1 \times \bigg( 1 + \dfrac{10}{100} \bigg)^1 \times \bigg( 1 + \dfrac{14}{100} \bigg)^1} \\ \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { A = 17000 \bigg( 1 + \cancel\dfrac{10}{100} \bigg)^1 \times \bigg( 1 + \cancel\dfrac{10}{100} \bigg)^1 \times \bigg( 1 + \cancel\dfrac{14}{100} \bigg)^1 } \\ \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { A = 17000 \bigg( 1 + 0.10 \bigg)^1 \times \bigg( 1 + 0.10 \bigg)^1 \times \bigg( 1 + 0.14 \bigg)^1 } \\ \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { A = 17000 \bigg( 1.10 \bigg)^1 \times \bigg( 1.10 \bigg)^1 \times \bigg( 1.14 \bigg)^1 } \\ \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { A = 17000 \bigg( 1.10 \bigg)^1 \times \bigg( 1.10 \bigg)^1 \times \bigg( 1.14 \bigg)^1 } \\ \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { A = 17000 \times 1.10 \times 1.10 \times 1.14 } \\ \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { A = 17000 \times 1.21 \times 1.14 } \\ \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { A = 17000 \times 1.3794 } \\ \\ \end{gathered}

 \begin{gathered} {\dashrightarrow \; \; {\underline{\boxed{\pmb{\sf{ Amount = ₹ \; 23449.8 }}}}}} \; {\pink{\bigstar}} \end{gathered}

 \\ \\

 \maltese Calculating the Compound Interest :

 \begin{gathered} \longmapsto \; \; \sf { Compound \; Interest = Amount - Principal } \\ \\ \end{gathered}

 \begin{gathered} \longmapsto \; \; \sf { Compound \; Interest = 23449.8 - 17000 } \\ \\ \end{gathered}

 \begin{gathered} {\longmapsto \; \; {\underline{\boxed{\pmb{\sf{ Compound \; Interst = ₹ \; 6449.8 }}}}}} \; {\green{\bigstar}} \end{gathered}

 \\ \\

 \therefore \; \; Amount is 23449.8 and Compound Interest is 6449.8 .

 \\ \qquad{\rule{200pt}{2pt}}

Similar questions