Math, asked by Anonymous, 11 hours ago


 \sf   \longrightarrow \: If  \:  x -  \: \dfrac{1}{x} = 4 \: then \:  find \:  the \:  value \:  of \:  x +  \dfrac{1}{x}

Don't dare to spam!!!! ​

Answers

Answered by anindyaadhikari13
19

\textsf{\large{\underline{Solution}:}}

Given That:

 \rm \longrightarrow x -  \dfrac{1}{x} = 4

We know that:

 \rm \longrightarrow (x + y)^{2} =  {(x - y)}^{2}  + 4xy

Similarly:

 \rm \hookrightarrow \bigg(x +  \dfrac{1}{x} \bigg)^{2} = \bigg(x -  \dfrac{1}{x} \bigg)^{2}  + 4 \times x \times  \dfrac{1}{x}

 \rm \hookrightarrow \bigg(x +  \dfrac{1}{x} \bigg) =\sqrt{ {4}^{2} + 4}

 \rm \hookrightarrow \bigg(x +  \dfrac{1}{x} \bigg) =\pm 2\sqrt{5}

★ Which is our required answer.

\textsf{\large{\underline{Learn More}:}}

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + 3ab(a + b) + b³
  • (a - b)³ = a³ - 3ab(a - b) - b³
  • a³ + b³ = (a + b)(a² - ab + b²)
  • a³ - b³ = (a - b)(a² + ab + b²)
  • (x + a)(x + b) = x² + (a + b)x + ab
  • (x + a)(x - b) = x² + (a - b)x - ab
  • (x - a)(x + b) = x² - (a - b)x - ab
  • (x - a)(x - b) = x² - (a + b)x + ab

anindyaadhikari13: Thanks for the brainliest ^_^
Answered by NITESH761
18

Answer:

see the image for explanation.

Step-by-step explanation:

Thank you.

Attachments:
Similar questions