Math, asked by Anonymous, 7 hours ago

 \sf{Question_{ \tiny(Refer \: To \: The \: Attachment)}}

 \textsf{Hoping For a Great answer}

 \bigstar \overline{ \underline{ \boxed{ \textsf{Thanks in Advance :D}}}} \bigstar

 \rule{200pt}{}

Attachments:

Answers

Answered by tname428
26

Step-by-step explanation:

given :

  • A park, in the shape of a quadrilateral ABCD

  • c = 90°, AB = 9 m, BC = 12 m, CD = 5 m and AD = 8 m

to find :

  • How much area does it occupy = ?

  • How much area does it occupy = ?

solution :

  • please check the full attached file

Attachments:
Answered by Anonymous
79

Given :

  • A park in the shape of a quadrilateral ABCD, has ∠C = 90° ,AB = 9 cm, BC = 12 cm, CD = 5 cm and AD = 8 cm.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

To Find :

  • How much area does this park occupy.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Solution :

{\blue{✇}}Here :

After constructing the quadrilateral the figure will be divided into 2 parts a right - angled triangle and another triangle .

\qquad{━━━━━━━━━━━━━━━━━━━━}

{\blue{✇}}Formula Used :

\large{\color{cyan}{\bigstar}} \: \: {\underline{\boxed{\color{red}{\sf{ Area{\small_{(Triangle) }} = \dfrac{1}{2} \times Base \times Height }}}}}

\large{\color{cyan}{\bigstar}} \: \: {\underline{\boxed{\color{red}{\sf{ Area{\small_{(Triangle) }} = \sqrt{s (s - a) (s - b) (s - c) }}}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━}

{\blue{✇}}Calculating the Area of ΔBCD :

~ Here :

  • ➙ Base = 12 m
  • ➙ Height = 5 m

~ Calculating the Area :

{\longmapsto{\qquad{\rm{ Area{\small_{(Triangle) }} = \dfrac{1}{2} \times Base \times Height }}}} \\ \\ \ {\longmapsto{\qquad{\rm{ Area{\small_{(Triangle) }} = \dfrac{1}{2} \times 12 \times 5 }}}} \\ \\ \ {\longmapsto{\qquad{\rm{ Area{\small_{(Triangle) }} = \dfrac{1}{\cancel2} \times \cancel{60} }}}} \\ \\ \ {\longmapsto{\qquad{\rm{ Area{\small_{(Triangle) }} = 1 \times 30 }}}} \\ \\ \ {\qquad{\sf{ Area \: of \: BCD \: = {\green{\sf{ 30 \: m² }}}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━}

{\blue{✇}}Calculating the Area of Δ ABD :

~ Here :

  • ➙ Side 1 = 8 cm
  • ➙ Side 2 = 9 cm
  • ➙ Side 3 = BD

~ Calculating the 3rd side using Pythagoras theorem :

{\longrightarrow{\qquad{\sf{ H² = B² + H² }}}} \\ \\ \ {\longrightarrow{\qquad{\sf{ BD² = (12)² + (5)² }}}} \\ \\ \ {\longrightarrow{\qquad{\sf{ BD² = 144 + 25 }}}} \\ \\ \ {\longrightarrow{\qquad{\sf{BD² = 169 }}}} \\ \\ \ {\longmapsto{\qquad{\sf{ BD = \sqrt{169}}}}} \\ \\ \ {\qquad{\sf{ 3rd \: Side \: = {\red{\sf{ 13 \: m}}}}}}

~ Now, The Area of triangle ABD :

Semi - Perimeter :

{\longrightarrow{\qquad{\sf{S = \dfrac{a + b + c}{2}}}}} \\ \\ \ {\longrightarrow{\qquad{\sf{ S = \dfrac{8 + 9 + 13}{2}}}}} \\ \\ \ {\longrightarrow{\qquad{\sf{ S = \cancel\dfrac{30}{2}}}}} \\ \\ \ {\qquad{\sf{ Semi - \: Perimeter \: = {\pink{\sf{ 15 \: m}}}}}}

Area :

{\longmapsto{\qquad{\sf{ Area{\small_{(Triangle) }} = \sqrt{s (s - a) (s - b) (s - c) }}}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Area{\small_{(Triangle) }} = \sqrt{15 (15 - 8) (15 - 9) (15 - 13) }}}}} \\ \\ \ {\longmapsto{\qquad{\sf{ Area{\small_{(Triangle) }} = \sqrt{15 \times 7 \times 6 \times 2 }}}}} \\ \\ \ {\longmapsto{\qquad{\sf{Area{\small_{(Triangle) }} = 6 \times \sqrt{35} }}}} {\bigg\lgroup {\pink{\sf{ Taking \: \sqrt{35} = 5.91 }}} \bigg\rgroup } \\ \\ \ {\longmapsto{\qquad{\sf{ Area{\small_{(Triangle) }} = 6 \times 5.91 }}}} \\ \\ \ {\qquad{\sf{ Area \: = {\purple{\sf{ 35.46 \: m² }}}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━}

~ Calculating Area of Quadrilateral :

{\longrightarrow{\qquad{\sf{ Area{\small_{(Quadrilateral) }} = Triangle_1 + Triangle_2 }}}} \\ \\ \ {\longrightarrow{\qquad{\sf{ Area{\small_{(Quadrilateral )}} = 30 \: m² + 35.46 \: m² }}}} \\ \\ \ {\qquad{\pink{:\longmapsto}}{\underline{\overline{\boxed{\color{orange}{\sf{ 65.5 \: m²(Approx.) }}}}}}}{\blue{\bigstar}}

\qquad{━━━━━━━━━━━━━━━━━━━━}

{\blue{✇}}Therefore :

❝ Area occupied by the park is 65.5 (Approx.) . ❞

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions