Math, asked by Anonymous, 6 hours ago

 \sf  \red{\dfrac{1}{n!} \ - \ \dfrac{1}{(n - 1)!} \ - \ \dfrac{1}{(n - 2)!}}

Answers

Answered by IamIronMan0
11

Answer:

\dfrac{1}{n!} \ - \ \dfrac{1}{(n - 1)!} \ - \ \dfrac{1}{(n - 2)!} \\  \\ =  \dfrac{1}{n!} \ - \ \dfrac{1}{(n - 1)!} . \frac{n}{n}  \ - \ \dfrac{1}{(n - 2)!} .\frac{n(n - 1)}{n(n - 1)}  \\  \\  = \dfrac{1}{n!} \ - \ \dfrac{n}{n !} \ - \ \dfrac{n(n - 1)}{n !} \\  \\  =  \dfrac{1}{n!} (1 - n -  {n}^{2}  + n) \\  \\  =    \red{\dfrac{1 -  {n}^{2} }{n!} }

Answered by MichWorldCutiestGirl
82

SoLuTiOn,

\begin{gathered}\dfrac{1}{n!} \ - \ \dfrac{1}{(n - 1)!} \ - \ \dfrac{1}{(n - 2)!} \\ \\ = \dfrac{1}{n!} \ - \ \dfrac{1}{(n - 1)!} . \frac{n}{n} \ - \ \dfrac{1}{(n - 2)!} .\frac{n(n - 1)}{n(n - 1)} \\ \\ = \dfrac{1}{n!} \ - \ \dfrac{n}{n !} \ - \ \dfrac{n(n - 1)}{n !} \\ \\ = \dfrac{1}{n!} (1 - n - {n}^{2} + n) \\ \\ = \</u><u>p</u><u>i</u><u>n</u><u>k</u><u>{\dfrac{1 - {n}^{2} }{n!} }\end{gathered}</u><u>

Similar questions