Math, asked by sajan6491, 2 months ago

 \sf \red{Given \: f(x) =  \frac{9}{ {9}^{x}  + 3}, find } \\  \rm\color{green}{f \bigg( \frac{1}{1996} \bigg) + f \bigg ( \frac{2}{1996} \bigg) +  \dots f \bigg(  \frac{1995}{1996} \bigg) }

Answers

Answered by mathdude500
8

Appropriate Question :-

Given that

\rm \: f(x) = \dfrac{ {9}^{x} }{ {9}^{x} + 3} \\

then find the value of

\rm \: f\bigg( \frac{1}{1996} \bigg) + f \bigg ( \frac{2}{1996} \bigg) + \dots\dots +  f\bigg( \frac{1995}{1996} \bigg) \\

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) = \dfrac{ {9}^{x} }{ {9}^{x} + 3} \\

Now, let we consider

\rm \: f(1 - x) = \dfrac{ {9}^{1 - x} }{ {9}^{1 - x} + 3} \\

\rm \: f(1 - x) = \dfrac{  \dfrac{9}{ {9}^{x} }  }{ \dfrac{9}{ {9}^{x} } + 3} \\

\rm \: f(1 - x) = \dfrac{9}{9 + 3. {9}^{x} }

\rm \: f(1 - x) = \dfrac{3}{3 + {9}^{x} }  \\

So,

\rm \: f(x) + f(1 - x) =\dfrac{ {9}^{x} }{3 +  {9}^{x} }   + \dfrac{3}{3 + {9}^{x} }  \\

\rm \: f(x) + f(1 - x) =\dfrac{ {9}^{x}  + 3}{3 +  {9}^{x} } \\

\rm\implies \:\rm \: f(x) + f(1 - x) =1 \\

Now, Consider

\rm \: f\bigg( \frac{1}{1996} \bigg) + f \bigg ( \frac{2}{1996} \bigg) + \dots f\bigg( \frac{1995}{1996} \bigg) \\

\rm  = f\bigg( \frac{1}{1996} \bigg) + f \bigg ( \frac{2}{1996} \bigg) + f\bigg( \frac{3}{1996} \bigg) + \dots  + f\bigg( \frac{998}{1996}\bigg) + \dots +  + f\bigg( \frac{1994}{1996} \bigg)f\bigg( \frac{1995}{1996} \bigg) \\

can be re-arranged as

\rm  = \bigg[f\bigg( \frac{1}{1996} \bigg) + f \bigg ( \frac{1995}{1996} \bigg)\bigg] + \bigg[f\bigg( \frac{2}{1996} \bigg)+ f\bigg( \frac{1994}{1996}\bigg)\bigg]  \\  \rm \: \dots \:  \dots+ \bigg[f\bigg( \frac{997}{1996}  \bigg) + f\bigg( \frac{999}{1996} \bigg)\bigg]  + f\bigg( \frac{1}{2} \bigg)\\

can be further rewritten as

\rm  = \bigg[f\bigg( \frac{1}{1996} \bigg) + f \bigg (1 - \frac{1}{1996} \bigg)\bigg] + \bigg[f\bigg( \frac{2}{1996} \bigg)+ f\bigg(1 - \frac{2}{1996}\bigg)\bigg]   \\  \rm \:  \dots \: \dots+ \bigg[f\bigg( \frac{997}{1996}  \bigg) + f\bigg(1 -  \frac{997}{1996} \bigg)\bigg]  + f\bigg( \frac{1}{2} \bigg)\\

As

 \boxed{ \rm{ \:\:\rm \: f(x) + f(1 - x) =1 \: \:  \:  }} \\

So, using this, we get

\rm \:  =  \: \underbrace{1 + 1 +  \dots  + 1} + \dfrac{ \sqrt{9} }{ \sqrt{9} + 3 } \\  997 \: times \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\rm \:  =  \: 997 + \dfrac{3}{3 + 3}  \\

\rm \:  =  \: 997 + \dfrac{3}{6}  \\

\rm \:  =  \: 997 + \dfrac{1}{2}  \\

\rm \:  =  \: 997 +0.5  \\

\rm \:  =  \: 997.5  \\

Hence,

\boxed{ \rm{ \:f\bigg( \frac{1}{1996} \bigg) + f \bigg ( \frac{2}{1996} \bigg) + \dots\dots +  f\bigg( \frac{1995}{1996} \bigg) = 997.5 \: }} \\

Answered by xxblackqueenxx37
41

Given:-

 \: \sf {Given \: f(x) = \frac{9}{ {9}^{x} + 3}, find } \\ \rm{f \bigg( \frac{1}{1996} \bigg) + f \bigg ( \frac{2}{1996} \bigg) + \dots f \bigg( \frac{1995}{1996} \bigg) }

Solution :-

 \sf \:  = f(x) =  \frac{ {9}^{x} }{ {9}^{x} + 3 }  \\  \sf \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =   \frac{ {9}^{1 - x} }{ {9}^{1 - x}  + 3}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  =  \frac{ \frac{9}{ {9}^{x} } }{ \frac{9}{ {9}^{x} }  + 3}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  =  \frac{9}{9 + 3. {9}^{x} }  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  =  \frac{3}{3 +  {9}^{x} }  \\  \sf \:

So

 \sf \:  = f(x) + f(x - 1) =  \frac{3 +  {9}^{x} }{3 +  {9}^{x} }  =1 \\ \: \begin{gathered}\rm \: = \:\underbrace{1 + 1 + \dots + 1} + \dfrac{ \sqrt{9} }{ \sqrt{9} + 3 } \\ 997 \: times \end{gathered}  \\ \begin{gathered}\rm \: = \: 997 + \dfrac{3}{3 + 3} \\ \end{gathered} \\ \begin{gathered}\rm \: = \: 997 + \dfrac{3}{6} \\ \end{gathered}  \\ \begin{gathered}\rm \: = \: 997 + \dfrac{1}{2} \\ \end{gathered}  \\ \begin{gathered}\rm \: = \: 997 +0.5 \\ \end{gathered} \\ \begin{gathered}\rm \: = \: 997.5 \\\end{gathered}

Answer :-

 \sf \fbox \red{ = 997.5}

Similar questions