Math, asked by Anonymous, 1 day ago


\sf\red{Question:-}


 \tt\displaystyle  \tt{\int  \frac{12y^{3}  - 4y}{2y} dy}

No spam

Good answer required​

Answers

Answered by mathdude500
35

\large\underline{\sf{Solution-}}

Given integral is

\displaystyle \tt{\int \frac{12y^{3} - 4y}{2y} dy} \\

\rm \:  =  \: \displaystyle \tt{\int \frac{4y(3y^{2} - 1)}{2y} dy}

\rm \:  =  \: \displaystyle\tt\int \:2( {3y}^{2} - 1) \: dy \\

\rm \:  =  \: 2\displaystyle\tt\int \:( {3y}^{2} - 1) \: dy \\

\rm \:  =  \: 6\displaystyle\tt\int \:{y}^{2} \: dy  \:  -  \:2 \:  \displaystyle\tt\int \:dy\\

We know,

\boxed{\tt{ \displaystyle\tt\int \: {x}^{n} \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}  + c \: }} \\

So, using this result, we get

\rm \:  =  \: 6 \times \dfrac{ {y}^{2 + 1} }{2 + 1}  - 2 \times y + c

\rm \:  =  \: 6 \times \dfrac{ {y}^{3} }{3}  - 2y + c

\rm \:  =  \:  {2y}^{3}   - 2y + c \\

Hence,

\rm\implies \:\boxed{\tt{ \:  \: \rm \:\displaystyle \tt{\int \frac{12y^{3} - 4y}{2y} dy}  =  \:  {2y}^{3}   - 2y + c \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by Missincridedible
4

\huge \color{navy}\maltese \bold \color{red} \: answer

Attachments:
Similar questions