Math, asked by Anonymous, 4 months ago


 \sf \scriptsize{ABCD \:  is  \: a \:  cyclic \:  quadrilateral \:  , in \:  which \:  \angle \:  DBC \:   = 80° \:  , } \\   \sf \: \scriptsize{ \angle \:  BAC \:  = 40 °.  \:  Find \:  \  \angle \: BCD. }

Answers

Answered by Anonymous
127

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\huge\boxed{\bf{\red{\fcolorbox{blue}{white}{Answer}}}}

\sf \scriptsize \red{Given = }{ In  \: a  \: cyclic  \: quadrilateral  \: ABCD , \angle DBC \:  = 80° ,  \angle \: BAC \:  = 40 °}

 \sf \scriptsize \red{To \: find \:  = }{ \angle \:  BCD = ?}

 \sf \scriptsize \red{Procedure = }{  \angle \: DBC  \: =  \angle \: DAC \:   \:  \:  \:  \: (Angles \:  in \:  the \:  same \:  segments \:  )}

 \sf \scriptsize{ \implies \angle \: DAC = 80° … (∵ DBC  = 80°  )} \\  \sf \scriptsize{ \implies Now, \: \angle \:DAB  = \angle \: DAC + \angle \:  CAB  = 80° + 40 \degree = 120 \degree}  \\  \sf \scriptsize{ Then, \: \angle \: DAB + \angle \: BCD = 180 \degree....(opposite \: angles \: of \: a \: cyclic \: quadrilateral.)} \\  \sf \scriptsize{ \implies \: 120 \degree  +  \angle \: BCD = 180 \degree} \\  \sf \scriptsize{ \therefore \: \angle \:BCD = 180 \degree \:  - 120 \degree \:  = }  \red{ \: 60 \degree . }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \sf  \scriptsize \: \red{Note = }{ Scroll \:  Left \:  to  \: right  \: side \:  to \:  See \:  } \\  \sf \scriptsize{whole \:  solution \:  of \:  Your  \: question.}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions