Math, asked by mkoiu4, 1 year ago


 {sin}^{ - 1} x + cos {}^{ - 1} x =  \frac{\pi}{2}

Answers

Answered by Swarnimkumar22
10

 \bf \: Let \: \: \: \: {sin}^{ - 1} x = \theta \: \: \: \: \: \: \: \: \: \: \: \: \: .......(1)\\ \\ so \: \: \bf \: \: \: x = \: sin \: \theta \: </p><p></p><p> \\  \\  \bf \: We \: know \: that \: Formula \: \\  \\  \\  \boxed{ \bf \: cos ( \frac{\pi}{2} - \theta )= sin \: \theta} \\  \\ </p><p></p><p>Now, \:  putting  \: it \:  value  \\  \\  \\ </p><p></p><p>\bf \: \: cos \: ( \frac{\pi}{2} - \theta) = x \\ \\ \\ \implies \: \bf \: \: ( \frac{\pi}{2} - \theta) = {cos}^{ - 1} x \\ \\ \: lets \: put \: the \: value \: of \: \theta \: from \: the \: first \: equation \\ \\ \\ \implies \: \bf \: \: ( \frac{\pi}{2} - {sin}^{ - 1} x) = {cos}^{ - 1} x \\ \\ \\ \implies \: \boxed{\bf \: \: sin {}^{ - 1}x + cos {}^{ - 1} x = \frac{\pi}{2} }


Anonymous: Check this answer on site
Swarnimkumar22: Hmm
Similar questions
Math, 1 year ago