Math, asked by 1esha57, 1 year ago


 \sin^{2}1 +  \sin^{2}3 +  \sin^{2}5 + ....... +  \sin^{2}85 +  \sin^{2}87 +  \sin^{2}89 \:  =  \: 22.5 \:  \:  \: proof \: that

Answers

Answered by shanujindal48p68s3s
5
Use the identity
 \sin{}^{2}(x) = 1 - { \cos(x) }^{2}
When we do that, we get
 { \sin}^{2} (3) = 1 - { \cos }^{2} (3)
Now using the identity
 \cos( \alpha ) = \sin(90 - \alpha )
We get
1 - { \cos }^{2} 3 = 1 - { \sin}^{2} 87
Now substituting that, we see that sin square 87 gets cancelled. Similarly, all the sin squares get cancelled, except for sin square 45.
Now the question reduces to
1 + 1 + 1...... + { \sin }^{2} 45
Now there are 22 numbers from 1 to 43 except 45, therefore
 = 22 +({ \frac{1}{ \sqrt{2} } })^{2} \\ = 22 + \frac{1}{2} \\ = 22.5

Savit11: besharam ke sharam and izzat nhi hote....
Savit11: uske liye tu tera izzat mat gira
Anonymous: OKAY BHAI
Savit11: saale tu mere 1 bar samne aaja ......utpal......besharam....kutte...
Savit11: hmmmm
Anonymous: OKAY BYE 2 HOURS BAAD DEKHTA HU
Savit11: bhai iske liye to ham dono hamare izzat gira hi di
Anonymous: Haa
Savit11: ok
Savit11: kamine......utpal......bahen ke life hi barbad kar di
Similar questions