Find 'A' and 'B'
Answers
Answer:
A=B=30degree
Step-by-step explanation:
Step-by-step explanation:let (a+b)=A
Step-by-step explanation:let (a+b)=A (a-b)=B
Step-by-step explanation:let (a+b)=A (a-b)=Bsin(A+B)=sinA cosB+cosA sinB
Step-by-step explanation:let (a+b)=A (a-b)=Bsin(A+B)=sinA cosB+cosA sinBsin(a-b)=√[1-cos^2(a-b)]=√[1-(3/4)]=1/2
Step-by-step explanation:let (a+b)=A (a-b)=Bsin(A+B)=sinA cosB+cosA sinBsin(a-b)=√[1-cos^2(a-b)]=√[1-(3/4)]=1/2following the above procedure
Step-by-step explanation:let (a+b)=A (a-b)=Bsin(A+B)=sinA cosB+cosA sinBsin(a-b)=√[1-cos^2(a-b)]=√[1-(3/4)]=1/2following the above procedure cos(a+b)=√3/2
Step-by-step explanation:let (a+b)=A (a-b)=Bsin(A+B)=sinA cosB+cosA sinBsin(a-b)=√[1-cos^2(a-b)]=√[1-(3/4)]=1/2following the above procedure cos(a+b)=√3/2putting the value of A&B we get,
Step-by-step explanation:let (a+b)=A (a-b)=Bsin(A+B)=sinA cosB+cosA sinBsin(a-b)=√[1-cos^2(a-b)]=√[1-(3/4)]=1/2following the above procedure cos(a+b)=√3/2putting the value of A&B we get,sin(a+b+a-b)=sin(a+b)cos(a-b)+cos(a+b)sin(a-b)
Step-by-step explanation:let (a+b)=A (a-b)=Bsin(A+B)=sinA cosB+cosA sinBsin(a-b)=√[1-cos^2(a-b)]=√[1-(3/4)]=1/2following the above procedure cos(a+b)=√3/2putting the value of A&B we get,sin(a+b+a-b)=sin(a+b)cos(a-b)+cos(a+b)sin(a-b)putting the values mentioned in the question we get,
sin2a=(√3/2*1/2)+(√3/2*1/2)=√3/4+√3/4=√3/2
sin2a=√3/2=sin60,so,
a=30
sin (a+b)=√3/2=sin60
a+b=60,a=30,so b=30