Math, asked by tr5610524, 1 year ago



 \sin( \alpha )   -  \cos( \alpha )  + 1 \div  \sin( \alpha  +  \cos( \alpha)  - 1 = 1 \div  \sec( \alpha )  -  \tan( \alpha)

Answers

Answered by Sharad001
70

Question :-

Prove that ,

  \sf\frac{ \sin \alpha -  \cos \alpha + 1}{ \sin \alpha +  \cos \alpha - 1}  =  \frac{1}{ \sec \alpha -  \tan \alpha}  \\

Proof :-

Formula used :-

 \star \:  \frac{1}{ \cos \theta} =  \sec \theta \\  \\  \star \:  \frac{ \sin \theta}{ \cos \theta}   =  \tan \theta \\  \\  \star \sf \:  { \sec}^{2}  \theta  -  { \tan}^{2}  \theta = 1

Explanation :-

We need to prove Left hand side is equal to right hand side ,

Taking left hand side (LHS)

 \rightarrow \: \sf\frac{ \sin \alpha -  \cos \alpha + 1}{ \sin \alpha +  \cos \alpha - 1}  \:  \\  \\  \sf \: taking \:  \cos \alpha \: common \: in \: both \\ \sf numenator \: and \: denomenator \\  \\  \rightarrow \: \sf\frac{ \tan \alpha - 1 +  \sec \alpha}{ \tan \alpha    + 1 -  \sec \alpha}  \:  \\  \\  \rightarrow  \sf\frac{ \tan \alpha - 1 +  \sec \alpha}{ \tan \alpha  -  \sec \alpha \:  +  { \sec}^{2} \alpha -  { \tan}^{2} \alpha  }  \: \:  \\  \\  \rightarrow \sf\frac{ \tan \alpha - 1 +  \sec \alpha}{ (\tan \alpha   -  \sec \alpha) + ( \sec \alpha +  \tan \alpha)( \sec \alpha -  \tan \alpha)}  \: \:  \\  \\  \rightarrow  \frac{ \tan \alpha - 1 +  \sec \alpha}{( \tan \alpha -  \sec \alpha)( - 1 +  \tan \alpha + \sec \alpha)}  \\  \\  \rightarrow \:  \frac{1}{ \tan \alpha -  \sec \alpha}

Left hand side = right hand side

hence proved .

\________________/

#answerwithquality

#BAL

Similar questions