Math, asked by bharat777, 1 year ago


 \sin(x)  +  \sin(y)  =  \tan(xy)
differentiation by dy/dx​

Answers

Answered by Anonymous
9

Given \:  \: Question \: Is \:  \\  \\  \sin(x)  +  \sin(y)  =  \tan(xy)  \\  \\ Differentiate \:  \: Both \: Sides \: With \:   \\ respect \: to \: x \: we \: have \\  \\  \cos(x)  +  \cos(y)  \frac{dy}{dx}  =  \sec {}^{2} (xy) (y + x  \frac{dy}{dx} ) \\  \\  \cos( y)   \frac{dy}{dx} -  \sec {}^{2} (xy) x \frac{dy}{dx}  = y \sec {}^{2} (xy)  -  \cos(x)  \\  \\  \frac{dy}{dx} ( \cos(y)  -  x\sec {}^{2} (xy)) = y \sec {}^{2} (xy)  -  \cos(x)  \\  \\  \frac{dy}{dx}  =  \frac{y \sec {}^{2} (xy)  -  \cos(x) }{ \cos(y) - x \sec {}^{2} (xy)  }  \\  \\ Note \:  \\  \\ 1) \:  \:  \: if \:  \: y = uv \:  \:  \: then \: its \: Differentiation \: is \\  \\  \frac{dy}{dx}  = u \frac{dv}{dx}  + v \frac{du}{dx}  \\  \\

Similar questions