Math, asked by sajan6491, 1 day ago

 \small{\displaystyle \tt \red{ \frac{1}{ {10}^{ - 9} + 1 }  +  \frac{1}{ {10}^{ - 8}  + 1}  +  \cdot \cdot \cdot \frac{1}{ {10}^{8}  + 1}  +  \frac{1}{ {10}^{9} + 1}}}

Answers

Answered by anindyaadhikari13
22

\textsf{\large{\underline{Solution}:}}

Given Expression:

 \rm =  \dfrac{1}{ {10}^{ - 9} + 1 } + \dfrac{1}{ {10}^{ - 8} + 1} + \cdot \cdot \cdot \dfrac{1}{ {10}^{8} + 1} + \dfrac{1}{ {10}^{9} + 1}

Now consider the first term.

 \rm =  \dfrac{1}{ {10}^{ - 9} + 1 }

 \rm =  \dfrac{1}{ \dfrac{1}{ {10}^{9} } + 1 }

 \rm =  \dfrac{1}{ \dfrac{ {10}^{9}  + 1}{ {10}^{9} }}

 \rm =  \dfrac{ {10}^{9}  }{ {10}^{9}  + 1}

You will get similar result for others too.

Therefore, it becomes:

 \rm =  \dfrac{ {10}^{9} }{ {10}^{9} + 1 } + \dfrac{ {10}^{8} }{ {10}^{8} + 1} + \cdot \cdot \cdot \dfrac{1}{ {10}^{8} + 1} + \dfrac{1}{ {10}^{9} + 1}

 \rm =  \dfrac{ {10}^{9}  + 1}{ {10}^{9} + 1 } + \dfrac{ {10}^{8}  + 1}{ {10}^{8} + 1} + \cdot \cdot \cdot \dfrac{ {10}^{1}  + 1}{ {10}^{1} + 1} + \dfrac{1}{ {10}^{0} + 1}

 \rm =  1 + 1 + .. \: 9 \: times  + \dfrac{1}{1+ 1}

 \rm = 9 +  \dfrac{1}{2}

 \rm = 9\dfrac{1}{2}

Which is our required answer.

\textsf{\large{\underline{Answer}:}}

 \rm\hookrightarrow\dfrac{1}{ {10}^{ - 9} + 1 } + \dfrac{1}{ {10}^{ - 8} + 1} + \cdot \cdot \cdot \dfrac{1}{ {10}^{8} + 1} + \dfrac{1}{ {10}^{9} + 1} = 9 \dfrac{1}{2}


anindyaadhikari13: Thanks for the brainliest ^_^
Similar questions