Math, asked by Anonymous, 5 months ago


solve \: the \: question fast \  \textless \ br /\  \textgreater \
only  \:  answer \:  if \:  you \:  know
spam \:  answer \:  will  \: be \:  deleted
I \:  will \:  report \:  wrong \:  answer

Attachments:

Answers

Answered by snehitha2
9

Answer :

The required value is 63/61

Step-by-step explanation :

To solve this question, first we have to find the values of x and y by rationalizing their denominators.

  • The rationalizing factor of x is (√5 - √3)
  • The rationalizing factor of y is (√5 + √3)

Rationalizing the denominator of x :

    \sf x=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\times \dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}-\sqrt{3}}\\\\ \sf x=\dfrac{(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}\\\\ \sf x=\dfrac{\sqrt{5}(\sqrt{5}-\sqrt{3})-\sqrt{3}(\sqrt{5}-\sqrt{3})}{\sqrt{5}(\sqrt{5}-\sqrt{3})+\sqrt{3}(\sqrt{5}-\sqrt{3})}\\\\ \sf x=\dfrac{\sqrt{5}^2-\sqrt{15}-\sqrt{15}+\sqrt{3}^2}{\sqrt{5}^2-\sqrt{15}+\sqrt{15}-\sqrt{3}^2}\\\\ \sf x=\dfrac{5-2\sqrt{15}+3}{5-3}\\\\ \sf x=\dfrac{8-2\sqrt{15}}{2}

    \boxed{\sf x=4-\sqrt{15}}

Rationalizing the denominator of y :

  \sf y=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\times \dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}\\\\ \sf y=\dfrac{(\sqrt{5}+\sqrt{3})(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}\\\\ \sf y=\dfrac{\sqrt{5}(\sqrt{5}+\sqrt{3})+\sqrt{3}(\sqrt{5}+\sqrt{3})}{\sqrt{5}(\sqrt{5}+\sqrt{3})-\sqrt{3}(\sqrt{5}+\sqrt{3})}\\\\ \sf y=\dfrac{\sqrt{5}^2+\sqrt{15}+\sqrt{15}+\sqrt{3}^2}{\sqrt{5}^2+\sqrt{15}-\sqrt{15}-\sqrt{3}^2}\\\\ \sf y=\dfrac{5+2\sqrt{15}+3}{5-3}\\\\ \sf y=\dfrac{8+2\sqrt{15}}{2}

  \boxed{\sf y=4+\sqrt{15}}

Now,

x² = (4 - √15)²

x² = 4² + (√15)² - 2(4)(√15)

x² = 16 + 15 - 8√15

x² = 31 - 8√15

 

y² = (4 + √15)²

y² = 4² + (√15)² + 2(4)(√15)

y² = 16 + 15 + 8√15

y² = 31 + 8√15

xy = (4 - √15) (4 + √15)

xy = 4² - √15²

xy = 16 - 15

xy = 1

Used identities :

(a - b)² = a² + b² - 2ab

(a + b)² = a² + b² + 2ab

(a + b) (a - b) = a² - b²

__________________

Substitute the values,

   \sf \longrightarrow \dfrac{x^2+xy+y^2}{x^2-xy+y^2} \\\\\\ \sf \longrightarrow \dfrac{31-8\sqrt{15}+1+31+8\sqrt{15}}{31-8\sqrt{15}-1+31+8\sqrt{15}} \\\\\\ \sf \longrightarrow \dfrac{31+1+31}{31-1+31} \\\\\\ \sf \longrightarrow \dfrac{63}{61}

Therefore, the required value is 63/61

Answered by prabhas24480
1

HÓPÉ \:  \:  ÍT  \:  \: HÉLPS \:  \:  Ú \: .....

Attachments:
Similar questions