Math, asked by rajanigupta6395, 3 months ago


 \sqrt{1 + sin a}  \div  \sqrt{1 -sin a }  = sec a + tan a

Answers

Answered by mathdude500
1

\large\underline{\bold{Given \:Question - }}

 \bf \: Prove \:  that \:  \sf \:  \sqrt{\dfrac{1 + sina}{1 - sina} }  = seca \:  +  \: tana

\large\underline{\sf{Solution-}}

Consider LHS,

\rm :\longmapsto\: \sqrt{\dfrac{1 + sina}{1 - sina} }

On multiply and divide by 1 + sina, we get

 \rm \:  =  \:  \sqrt{\dfrac{1 + sina}{1 - sina}  \times \dfrac{1 + sina}{1 + sina} }

 \rm \:  =  \:  \sqrt{\dfrac{ {(1 + sina)}^{2} }{1 -  {sin}^{2}a } }  \:  \:  \{ \because \:  {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \}

 \rm \:  =  \: \dfrac{1 + sina}{ \sqrt{ {cos}^{2}a } }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{ \because \: 1 -  {sin}^{2}a =  {cos}^{2}a \}

 \rm \:  =  \: \dfrac{1 + sina}{cosa}

 \rm \:  =  \: \dfrac{1}{cosa}  + \dfrac{sina}{cosa}

 \rm \:  =  \: seca \:  +  \: tana

 \rm \:  =  \: RHS

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions