prove that seca-tana
Answers
Answered by
0
√1-sina÷1+sina
by rationalizing
=√1-sina/1+sina×1-sina/1-sina
=√(1-sina)^2/1^2-sina^2
=√(1-sina)^2/1-sina^2
=√(1-sina)^2/cosa^2
by applying Root on numerator and denominator
= (1-sina)/cosa
=1/cosa-sina/cosa
= seca - tana
by rationalizing
=√1-sina/1+sina×1-sina/1-sina
=√(1-sina)^2/1^2-sina^2
=√(1-sina)^2/1-sina^2
=√(1-sina)^2/cosa^2
by applying Root on numerator and denominator
= (1-sina)/cosa
=1/cosa-sina/cosa
= seca - tana
Similar questions