Math, asked by jranjan657, 9 months ago


( \sqrt{11 }  +  \sqrt{3} )^{ \frac{1}{3} } (\sqrt{11 }   -  \sqrt{3} )^{ \frac{1}{3} }

Answers

Answered by BrainlyTornado
3

ANSWER:

( \sqrt{11 } + \sqrt{3} )^{ \frac{1}{3} } (\sqrt{11 } - \sqrt{3} )^{ \frac{1}{3} }   = 2

GIVEN:

( \sqrt{11 } + \sqrt{3} )^{ \frac{1}{3} } (\sqrt{11 } - \sqrt{3} )^{ \frac{1}{3} }

TO FIND:

The value of ( \sqrt{11 } + \sqrt{3} )^{ \frac{1}{3} } (\sqrt{11 } - \sqrt{3} )^{ \frac{1}{3} }

EXPLANATION:

( \sqrt{11 } + \sqrt{3} )^{ \frac{1}{3} } (\sqrt{11 } - \sqrt{3} )^{ \frac{1}{3} }

=  \sqrt[3]{ (\sqrt{11} +  \sqrt{3})( \sqrt{11}   -  \sqrt{3} )  }

(A + B)(A - B) = (A² - B²)

=  \sqrt[3]{ (\sqrt{11})^{2}   -  (\sqrt{3})^{2}  }

=  \sqrt[3]{ 11 -  3  }

=  \sqrt[3]{ 8 }

 = 2

( \sqrt{11 } + \sqrt{3} )^{ \frac{1}{3} } (\sqrt{11 } - \sqrt{3} )^{ \frac{1}{3} }   = 2

SOME OTHER FORMULAE:

  • (A + B)² = A² + 2AB + B²

  • (A - B)² = A² - 2AB + B²

  • A² + B² = (A + B)² - 2AB

  • A² + B² = (A - B)² + 2AB

  • A³ - B³ = (A - B)(A² + AB + B²)

  • A³ + B³ = (A + B)(A² - AB + B²)

  • A³ + B³ + C³ = 3ABC ( A + B + C = 0)

  • (A - B)³ = A³ - B³ - 3AB(A - B)

  • (A + B)³ = A³ + B³ + 3AB(A + B)
Similar questions