Math, asked by hemantaparida697, 5 months ago


 \sqrt{12 +  \sqrt{12 +  \sqrt{12 ...... = x} } } find the value of x

Answers

Answered by aryan073
4

Given:

 \rm \:  \sqrt{12 +  \sqrt{12 +  \sqrt{12 +  \sqrt{12 +  \sqrt{12 \: ........ \infin} } } } }  = x

To Find :

• The value of x =?

Solution :

As we can see that \rm{\sqrt{12}} is repeating

So, let x be there number repeating in this equation.

 \\  \implies \sf \:  \sqrt{12 +  \sqrt{12 +  \sqrt{12 +  \sqrt{12 +  \sqrt{12 \:  \: .... ....\infin} } } } }  = x

 \\  \implies \sf \:  \sqrt{12 + x}  = x \\  \\  \implies \sf \: 12 + x =  {x}^{2}  \\  \\  \implies \sf \: 12 + x -  {x}^{2}  = 0 \\  \\  \implies \sf \:  -  {x}^{2}  + x + 12 = 0 \\  \\  \implies \sf \:  {x}^{2}  - x - 12 = 0 \\  \\  \implies \sf \:  {x}^{2}  - 4x + 3x - 12 = 0 \\  \\  \implies \sf \: x(x - 4) + 3(x - 4) = 0 \\  \\  \implies \sf \: (x + 3)(x - 4) = 0 \\  \\  \implies \sf \: x = 4 \:  \: and \:  \: x =  - 3

As we know that, negative value is neglected.

So answer will be x=4

  \pink \bigstar\boxed{ \sf{ \sqrt{12 +  \sqrt{12  + \sqrt{ 12 +  \sqrt{12 \:  \: \:  \:  \: ... .... \infin}  } } }  = 4}}

Similar questions