Math, asked by skumarkdp2016, 11 months ago


 \sqrt{14 + 6 \sqrt{5} }  =  \sqrt{x}  +  \sqrt{y}

Answers

Answered by kapilsir19
0

Answer:

PLEASE Mark as a result

Step-by-step explanation:

 \sqrt{14 + 6 \sqrt{5} }  =  \sqrt{x} +  \sqrt{y}   \\  {( \sqrt{14 + 6 \sqrt{5} } })^{2}  = ( { \sqrt{x}  +  \sqrt{y} }) ^{2}  \\  14 + 6 \sqrt{5}  = x + y + 2 \sqrt{xy}  \\ so \\ x = 14 \\ y + 2 \sqrt{xy}  = 6 \sqrt{5}    \\ y + 2 \sqrt{xy} =  4 \sqrt{5}  + 2 \sqrt{5}  \\ from \: here \\ y  = 4 \sqrt{5}  \\ and \\ 2\sqrt{14y}  = 2 \sqrt{5}   \\ 14y = 5 \\ y =  \frac{5}{14}  \\ so \\ x = 14 \\ y = 4 \sqrt{5}  \\ y =  \frac{5}{14}  \\ anssssssssssssssssssss

Similar questions