Math, asked by uday9211, 5 months ago


 \sqrt{20 +  \sqrt{20 +  \sqrt{20 +  \sqrt{20... \infty } } } }

Answers

Answered by Anonymous
8

Answer:

\huge\underbrace\mathtt\pink{Hypothetical Question}

Answered by Anonymous
16

To FinD :

 \rightsquigarrow \sf   \sqrt{20 +  \sqrt{20  + \sqrt{20 +  \dots \infty } } }  =  { }^{}  \\

SolutioN :

 \:  \:  \:  \circ\sf    \:  \:  \:  \:  \: \sqrt{20 +  \sqrt{20  + \sqrt{20 +  \dots \infty } } }   = x  \:  \:  \:  \:  \:  \:  \:  \:[ let ]

 \implies\sf     20 +  \sqrt{20  + \sqrt{20 +  \dots \infty } }   =  {x}^{2}  \\

 \implies\sf     20 +  x  =  {x}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  [ \sf \because \: \sqrt{20 +  \sqrt{20 +  \sqrt{20  + \dots \infty } } } = x   ] \\

 \implies \sf \:  {x}^{2}  - x - 20 = 0

 \implies \sf \:  (x - 5)(x + 4) = 0

 \implies \sf \:  { { \sf{x = 5 \:  \:  \:  \:  \: or \:  \:  \:  \:  \: x =  - 4}}}

 \:  \:  \:  \circ \:  \:  \:  \sf   \sqrt{20 +  \sqrt{20  + \sqrt{20 +  \dots \infty } } } \:  \: will \:   \:   never \:    - ve \:  \:

 \therefore \underline{ \boxed{ \sf  \sqrt{20 +  \sqrt{20 +  \sqrt{20 +  \dots \infty } } }  = 5}} \\

____________________

HAVE A WONDERFUL DAY AHEAD...

 \tt \fcolorbox{skyblue}{skyblue}{@StayHigh}

Similar questions