Math, asked by milcahtesfaye0, 4 months ago

\sqrt[3]{\frac{y^{5} }{27y^2} }

Answers

Answered by mariumsiddiq98
0

Step-by-step explanation:

 \sqrt[3]{ \frac{ {y}^{5} }{27 {y}^{2} } }  \\  = \sqrt[3]{ \frac{ {y}^{3} }{27 } } \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \:  \:  \:  \ =  \sqrt[3]{ \frac{ {y \times y \times y} }{ 3 \times 3 \times 3 } } \\\  = \frac{ {y} }{3}  \:   \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hope you get your answer!!

Please mark me as brainliest!!

Answered by RvChaudharY50
1

Question :- \sqrt[3]{\frac{y^{5} }{27y^{2}}}

Solution :-

 \purple\longmapsto\footnotesize \sqrt[3]{\frac{y^{5}}{27y^{2}}}\\\\\purple\longmapsto\footnotesize\: \sqrt[3]{\frac{ \cancel{y^{5}}}{27 \cancel{y^{2}}}}\\\\  \purple\longmapsto\footnotesize \sqrt[3]{\frac{y^{3}}{27}} \\  \\  \purple\longmapsto\footnotesize \: (\frac{ {y}^{3}}{27})^{ \frac{1}{3} }  \\  \\ \purple\longmapsto\footnotesize \: (\frac{ {y}^{3}}{ {3}^{3} })^{ \frac{1}{3} } \\  \\ \purple\longmapsto\footnotesize \: ((\frac{y}{3})^{ \cancel3})^{ \frac{1}{ \cancel3} }  \\  \\ \purple\longmapsto\footnotesize \:  \frac{y}{3}

Learn more :-

if a nine digit number 260A4B596 is divisible by 33, Then find the number of possible values of A.

https://brainly.in/question/32686002

if n is an integer such that 1nn352 is a six digit number

https://brainly.in/question/26617043

Similar questions