Math, asked by Pulsator, 11 months ago

\sqrt{3} * \sqrt[3]{5}

Answers

Answered by jhansijeyakumar12
2

Answer:

\sqrt[6]{675}

Step-by-step explanation:

\sqrt{3}*\sqrt[3]{5\\} \\\\ =3^1^/^2-5^1^/^3\\\\Multiply\ \frac{1}{2} \ with\ \frac{3}{3}\ and\ \frac{1}{3} \ with\ \frac{2}{2}.

= 3^{ \frac{1}{2}* \frac{3}{3}  } *  5^{ \frac{1}{3}* \frac{2}{2}  }

= 3^{ \frac{3}{6} } * 5^{ \frac{2}{6} } \\\\= \sqrt[6]{ 3^{3} } *  \sqrt[6]{ 5^{2} } \\

= \sqrt[6]{27} *  \sqrt[6]{25} \\\\= \sqrt[6]{27*25} \\\\= \sqrt[6]{675} \\\\

Similar questions