Math, asked by mantoshjha, 9 months ago


 \sqrt{5 }  - 1 \div  \sqrt{5}  + 1 +  \sqrt{5 }  + 1 \div  \sqrt{5}  - 1 = a + b \sqrt{5}
answer

Answers

Answered by Anonymous
4

Answer:

\sf{The \ value \ of \ a \ is \ 3 \ and \ value}

\sf{b \ is \ zero.}

Given:

\sf{a+b=\dfrac{\sqrt5-1}{\sqrt5+1}+\dfrac{\sqrt5+1}{\sqrt5-1}}

To find:

  • The value of a and b.

Solution:

\sf{a+b=\dfrac{\sqrt5-1}{\sqrt5+1}+\dfrac{\sqrt5+1}{\sqrt5-1}}

\sf{=\dfrac{(\sqrt5-1)^{2}+(\sqrt5+1)^{2}}{(\sqrt5+1)(\sqrt5-1)}}

\sf{=\dfrac{2(\sqrt5)^{2}+2(1)^{2}}{(\sqrt5)^{2}-1^{2}}}

\sf{=\dfrac{10+2}{4}}

\sf{=3}

\sf{\therefore{a+b\sqrt5=3}}

\sf{\therefore{a=3 \ and \ b=0}}

\sf\purple{\tt{\therefore{The \ value \ of \ a \ is \ 3 \ and \ value}}}

\sf\purple{\tt{b \ is \ zero.}}

Similar questions