Math, asked by aismem13, 1 year ago

\sqrt{5} +\sqrt{2} / \sqrt{5} - \sqrt{2}
rationalize the denominator


pls answer it !!! i will mark the brainliest !!

Answers

Answered by arshbbcommander
7

 <body bgcolor="pink"> <font color="Purple">

 <font size="5">

\huge{\boxed{\boxed{HEY}}}

 </font>

\bold\red{♡FollowMe♡}

 <font color="blue">

\huge\underline\mathscr{Answer}

 <marquee direction="down" bgcolor="black">

⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️

 </marquee>

 <font color="purple">

 \sqrt{5} +\sqrt{2} / \sqrt{5} - \sqrt{2}= \\   \frac{ \sqrt{5} +  \sqrt{2}  }{ \sqrt{5} -  \sqrt{2}  }  \\

Rationalising factor..

 \sqrt{5}  +  \sqrt{2}

Multiplying rationalising factor on both numerator and denominator...

 \frac{ \sqrt{5} +  \sqrt{2}  }{ \sqrt{5} -  \sqrt{2}  }  \times  \frac{ \sqrt{5} +  \sqrt{2}  }{ \sqrt{5}  +   \sqrt{2}  } \\

using identity (a-b)(a+b)

 \frac{( \sqrt{5} +  \sqrt{2} )^{2}  }{ { \sqrt{5} }^{2} -  \sqrt{2}^{2}   }   \\   =  \frac{5 + 2 + 2 \sqrt{10} }{5 - 2} \\  =   \frac{7 + 2 \sqrt{10}}{3}

 <font color="white"> <marquee direction="up" bgcolor="black">

⬆️⬆️⬆️⬆️⬆️⬆️⬆️⬆️⬆️⬆️

 </marquee>

...Hope it helps....

Answered by BrainlyIshika
14

\dfrac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}

Multiply both the numerator and denominator with \sqrt{5}+\sqrt{2}

 \dfrac{ \sqrt{5}  +  \sqrt{2} }{ \sqrt{5}  -  \sqrt{2} }  \times  \dfrac{ \sqrt{5} +  \sqrt{2}  }{ \sqrt{5} +  \sqrt{2}  }  \\ \\   \frac{ {( \sqrt{5} +  \sqrt{2})  }^{2} }{( \sqrt{5}   -  \sqrt{2})( \sqrt{5} +  \sqrt{2}  ) } \\   \\  \rm{\bold{Use \: the \: identities: }\:  {(a + b)}^{2}  =  {a}^{2} + 2ab  +  {b}^{2} }  \\  \qquad \qquad \qquad \quad \:   \:    \rm(a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\ \frac{ {( \sqrt{5} )}^{2}  + 2( \sqrt{5} )( \sqrt{2}) +  {( \sqrt{2}) }^{2}  }{  ({{ \sqrt{5})  }^{2}  -  {( \sqrt{2}) }^{2} } }  \\  \\  \frac{5 + 2 \sqrt{10} + 2 }{5 - 2}   \\ \\  \fbox{\frac{7 + 2 \sqrt{10} }{3}}

Similar questions