Math, asked by sowmyapavin, 10 months ago


 \sqrt{5 +  \sqrt{5 +  \sqrt{5 +  \infty } } }

Answers

Answered by Abhishek474241
1

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  •  \sqrt{5 + \sqrt{5 + \sqrt{5 + \infty } } }

{\sf{\green{\underline{\large{To\:find}}}}}

  • The given value of term

{\sf{\pink{\underline{\Large{Explanation}}}}}

\tt\sqrt{5 + \sqrt{5 + \sqrt{5 + \infty } } }

Let \tt\sqrt{5 + \sqrt{5 + \sqrt{5 + \infty } } } be x

\tt\rightarrow\sqrt{5 + \sqrt{5 + \sqrt{5 + \infty } } } =x

Both side squaring

\tt\rightarrow\sqrt{5 + \sqrt{5 + \sqrt{5 + \infty } } } =x

\tt\rightarrow(\sqrt{5 + \sqrt{5 + \sqrt{5 + \infty } } })^2 =x²

\tt\rightarrow{5 + \sqrt{5 + \sqrt{5 + \infty  } } }) =x²

Now again after squaring the series make

Therefore,

\tt\rightarrow{5 + \sqrt{5 + \sqrt{5 + \infty  } } } =x²

\tt\rightarrow{5 + x) =x²

=X²-X-5

Solving the quadratic equation

=X²-X-5

Quadratic formula

\tt{X=\dfrac{-b\pm{\sqrt{b^2-4ac}}}{2a}}

a=1

b=-1

c=-5

\rightarrow\tt{X=\dfrac{-b\pm{\sqrt{b^2-4ac}}}{2a}}

\rightarrow\tt{X=\dfrac{1\pm{\sqrt{1+20}}}{2}}

Taking x as +

\rightarrow\tt{X=\dfrac{1+{\sqrt{1+20}}}{2}}

\rightarrow\tt{X=\dfrac{1+{\sqrt{21}}}{2}}

Taking x as -

\rightarrow\tt{X=\dfrac{1-{\sqrt{1+20}}}{2}}

\rightarrow\tt{X=\dfrac{1-{\sqrt{21}}}{2}}

Hence value of x is +

Similar questions