Math, asked by motivated, 11 months ago


 \sqrt{6 +  \sqrt{6 +  \sqrt{6........ \infty } } }

Answers

Answered by Anonymous
7

Answer \:  \\  \\ Given \: series \: is \\  \\  \sqrt{6 +  \sqrt{6 +  \sqrt{6 + ... +  \infty } } }  \\  \\ let \: the \: sum \: of \: this \: be \:  = x \\  \\  \sqrt{6 +  \sqrt{6 +  \sqrt{6 + ... +  \infty } } }  = x \\  \\ if \: we \: remove \: one \:  \sqrt{6}  \: the \: series \: will \\ not \: alter. \: becoz \: its  \: the \: of \: infinite \: terms. \\  \\  \sqrt{6 +  \sqrt{6}  + ... +  \infty }  = x \\  \\  \sqrt{6 + x}  = x \\  \\ squaring \: on \: both \: sides \: we \: have \\  \\ ( \sqrt{6 + x} ) {}^{2}  = x  {}^{2}   \\  \\ 6 + x = x {}^{2}  \\  \\ x {}^{2}  - x - 6 = 0 \\  \\ x {}^{2}  - 3x + 2x - 6 = 0 \\  \\ x(x - 3) + 2(x - 3) = 0 \\  \\ (x + 2)(x - 3) = 0 \\  \\ x =  - 2 \:  \:  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \:  \: x = 3 \\  \\ x =  - 2 \: will \: be \: rejected \:  \: becoz \: sum \: of \: this \\ series \: can \:not \: be \:  - ive \\  \\ so \:  \:  \: x = 3 \\  \\ therefore \: sum \: of \: this \: series \:  = 3 \\  \\   \sqrt{6 +  \sqrt{6 +  \sqrt{6 + ... +  \infty } } }  = 3


Anonymous: dono maharaj ek sath same ques nycyr
Anonymous: hm.
Answered by Anonymous
6

Answer \:  \\  \\ Given \: series \: is \\  \\  \sqrt{6 +  \sqrt{6 +  \sqrt{6 + ... +  \infty } } }  \\  \\ let \: the \: sum \: of \: this \: be \:  = x \\  \\  \sqrt{6 +  \sqrt{6 +  \sqrt{6 + ... +  \infty } } }  = x \\  \\ if \: we \: remove \: one \:  \sqrt{6}  \: the \: series \: will \\ not \: alter. \: becoz \: its  \: the \: of \: infinite \: terms. \\  \\  \sqrt{6 +  \sqrt{6}  + ... +  \infty }  = x \\  \\  \sqrt{6 + x}  = x \\  \\ squaring \: on \: both \: sides \: we \: have \\  \\ ( \sqrt{6 + x} ) {}^{2}  = x  {}^{2}   \\  \\ 6 + x = x {}^{2}  \\  \\ x {}^{2}  - x - 6 = 0 \\  \\ x {}^{2}  - 3x + 2x - 6 = 0 \\  \\ x(x - 3) + 2(x - 3) = 0 \\  \\ (x + 2)(x - 3) = 0 \\  \\ x =  - 2 \:  \:  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \:  \: x = 3 \\  \\ x =  - 2 \: will \: be \: rejected \:  \: becoz \: sum \: of \: this \\ series \: can \:not \: be \:  - ive \\  \\ so \:  \:  \: x = 3 \\  \\ therefore \: sum \: of \: this \: series \:  = 3 \\  \\   \sqrt{6 +  \sqrt{6 +  \sqrt{6 + ... +  \infty } } }  = 3

Similar questions