Math, asked by ashishpanda2006, 3 months ago


 \sqrt{8 + 2 \sqrt{15} }  -  \sqrt{8 - 2 \sqrt{15} }
is:
(a)
2 \sqrt{15}
(b)
 \sqrt{8}
(c)
 \sqrt{12}
(d) √5​

Answers

Answered by abhi569
53

Answer:

√12

Step-by-step explanation:

Let √(8 + 2√15) - √(8 - 2√15) be x.

Square on both sides :

=> [√(8 + 2√15) - √(8 - 2√15)]² = x²

=> √(8 + 2√15)² + √(8 - 2√15)² - 2√(8 + 2√15)(8 - 2√15) = x²

=> (8 + 2√15) + (8 - 2√15) - 2√(8² - (2√15)²) = x²

=> 16 - 2√(64 - 60) = x²

=> 16 - 2(2) = x²

=> 12 = x²

=> √12 = x

As we assumed '√(8 + 2√15) - √(8 - 2√15) be x',

√(8 + 2√15) - √(8 - 2√15) is √12

This can also be solved as :

=> √(8 + 2√15) - √(8 - 2√15)

=> √(5 + 3 + 2√5√3) - √(5 + 3 - 2√5√3)

=> √(√5² + √3² + 2√5√3) - √(√5² + √3² - 2√5√3)

=> √(√5 + √3)² - √(√5 - √3)²

=> (√5 + √3) - (√5 - √3)

=> 2√3

=> √3*4

=> √12

*it is better to be seen through browser/destop-mode.


Anonymous: Great!!
amansharma264: Nyccc
Answered by Anonymous
51

Answer:

Solution :-

Rationalising

  \sf  \sqrt{8 + 2 \sqrt{15} }  -  \sqrt{8 - 2 \sqrt{15} }

8 can be written as 3 + 5 or 5 + 3

 \sf  \sqrt{5 + 3 + 2 \sqrt{15} }  -  \sqrt{5 + 3 - 2 \sqrt{15} }

 \sf \:  \sqrt{5 + 3 + 2 \sqrt{5}  \times  \sqrt{3} }  -  \sqrt{5 + 3 - 2 \sqrt{5}  \times  \sqrt{3} }

 \sf \:  \sqrt{\sqrt{5} {}^{2}  +  \sqrt{3 }{}^{2}   }  -  \sqrt{ \sqrt{5} {}^{2}   -  \sqrt{3 {}^{2} } }

 \sf \:  \sqrt{5}  +  \sqrt{3}  -  \sqrt{5}  +  \sqrt{3}

 \sf \:  \sqrt{3}  +  \sqrt{3}

 \sf \: 2 \sqrt{3}

 \sf \:  \sqrt{12}

Similar questions