is:
(a)
(b)
(c)
(d) √5
Answers
Answered by
53
Answer:
√12
Step-by-step explanation:
Let √(8 + 2√15) - √(8 - 2√15) be x.
Square on both sides :
=> [√(8 + 2√15) - √(8 - 2√15)]² = x²
=> √(8 + 2√15)² + √(8 - 2√15)² - 2√(8 + 2√15)(8 - 2√15) = x²
=> (8 + 2√15) + (8 - 2√15) - 2√(8² - (2√15)²) = x²
=> 16 - 2√(64 - 60) = x²
=> 16 - 2(2) = x²
=> 12 = x²
=> √12 = x
As we assumed '√(8 + 2√15) - √(8 - 2√15) be x',
√(8 + 2√15) - √(8 - 2√15) is √12
This can also be solved as :
=> √(8 + 2√15) - √(8 - 2√15)
=> √(5 + 3 + 2√5√3) - √(5 + 3 - 2√5√3)
=> √(√5² + √3² + 2√5√3) - √(√5² + √3² - 2√5√3)
=> √(√5 + √3)² - √(√5 - √3)²
=> (√5 + √3) - (√5 - √3)
=> 2√3
=> √3*4
=> √12
*it is better to be seen through browser/destop-mode.
Anonymous:
Great!!
Answered by
51
Answer:
Solution :-
Rationalising
8 can be written as 3 + 5 or 5 + 3
Similar questions