Math, asked by 8292890869, 11 months ago


 \sqrt{8 +  \sqrt{28} }  -  \sqrt{8 -  \sqrt{28} }  \div  \sqrt{8 +  \sqrt{28} }  +  \sqrt{8 -  \sqrt{28} }

Answers

Answered by BrainlyPopularman
1

Answer:

GIVEN THAT:-

 \frac{(8 +  \sqrt{28} ) - (8 -  \sqrt{28} )}{(8 +  \sqrt{28} ) + (8 +  \sqrt{28} )}

RATIONALIZATION -

 =  \frac{(8 +  \sqrt{28}) - (8 -  \sqrt{28})  }{(8 +  \sqrt{28} ) + (8 -  \sqrt{28}) }  \times  \frac{(8 +  \sqrt{28}) - (8 +  \sqrt{28})  }{(8 +  \sqrt{28}) - (8  -  \sqrt{28} ) }  \\  \\  =  \frac{ {((8 +  \sqrt{28} ) - (8 -  \sqrt{28} ))}^{2} }{ {(8 +  \sqrt{28} )}^{2}  -  {(8  -  \sqrt{28} )}^{2} }  \\  \\  =   \frac{ {(8 +  \sqrt{28} ) }^{2}  +  {(8 -  \sqrt{28}) }^{2}  - 2(8 +  \sqrt{28} )(8 -  \sqrt{28} )}{(8 +  \sqrt{28}  + 8 -  \sqrt{28} )(8 +  \sqrt{28}  - 8 +  \sqrt{28} )}  \\  \\  =  \frac{64 + 28 + 16 \sqrt{28}  + 64 + 28 - 16 \sqrt{28}  - 2( {(8)}^{2}  - 28)}{(16)(2 \sqrt{28} )}  \\  \\  =  \frac{128 + 56 - 2(64 - 28)}{32 \sqrt{28} }  \\  \\  =  \frac{184 - 2 \times 36}{32 \sqrt{28} }  \\  \\  =  \frac{184 - 72}{32 \sqrt{28} }  \\  \\  =  \frac{112}{32 \sqrt{28} }  \\  \\  =  \frac{7}{4 \sqrt{7} }  \\  \\  =  \frac{ \sqrt{7} }{4}

HOPE YOU LIKE THIS SOLUTION...

Similar questions