Math, asked by sakina090705, 11 months ago


( \sqrt{ \frac{3}{5} } ) ^{x + 1}  =  \frac{125}{27}

Answers

Answered by Anonymous
24

Answer:

\large\bold\red{x=-7}

Step-by-step explanation:

Given,

  {( \sqrt{ \frac{3}{5} } )}^{(x + 1)}  =  \frac{125}{27}

Further Simplifying,

We get,

 =  >  {( \frac{3}{5} )}^{ \frac{x + 1}{2} }  =  \frac{ {5}^{3} }{ {3}^{3} }  \\  \\  =  >  {( \frac{3}{5} )}^{ \frac{x + 1}{2} } =  {( \frac{5}{3} )}^{3}   \\  \\  =  >  {( \frac{3}{5}) }^{ \frac{x + 1}{2} }  =  \frac{1}{ ({ \frac{3}{5} )}^{3} } \\  \\  =  >  {( \frac{3}{5} )}^{ \frac{x + 1}{2} } \times  {( \frac{3}{5}) }^{3} = 1 \\  \\  =  >  {( \frac{3}{5}) }^{3 +  \frac{x + 1}{2} }     =  {( \frac{3}{5}) }^{0}

Now,

The bases are same on both sides,

Therefore,

The exponent will also be same,

Therefore,

We get,

 =  > 3 +  \frac{x + 1}{2}  = 0 \\  \\  =  > 6 + x + 1 = 0 \\  \\  =  > x + 7 = 0 \\  \\  =  > x  =  - 7

Hence,

x = -7 is the solution .

Similar questions