Science, asked by thapaavinitika6765, 8 months ago

\sqrt{\sin ^2\left(-1\right)}\le 1-\sin \left(x\right)

Answers

Answered by Anonymous
2

\sqrt{sin^2\left(-1\right)}\le 1-sin\left(x\right)

\mathrm{Switch\:sides}

1-\sin \left(x\right)\ge \sqrt{\sin ^2\left(-1\right)}

\mathrm{Simplify\:}\sqrt{\sin ^2\left(-1\right)}:\quad \sin \left(1\right)

1-\sin \left(x\right)\ge \sin \left(1\right)

\mathrm{Subtract\:}1\mathrm{\:from\:both\:sides}

1-\sin \left(x\right)-1\ge \sin \left(1\right)-1

\mathrm{Simplify}

-\sin \left(x\right)\ge \sin \left(1\right)-1

Answered by Anonymous
1

\sf \to 1-\sin \left(x\right)\ge \sin \left(1\right)

\sf\to 1-\sin \left(x\right)-1\ge \sin \left(1\right)

\sf \to\red{-\sin \left(x\right)\ge \sin \left(1\right)}

Similar questions