Answers
Step-by-step explanation:
Given that we have to prove:
\frac{\tan \theta+\sec \theta-1}{\tan \theta-\sec \theta+1}=\frac{\cos \theta}{1-\sin \theta}
tanθ−secθ+1
tanθ+secθ−1
=
1−sinθ
cosθ
Now lets solve left hand side
L . H . S=\frac{\tan \theta+\sec \theta-1}{\tan \theta-\sec \theta+1}L.H.S=
tanθ−secθ+1
tanθ+secθ−1
---- eqn 1
\text { we know } \sec ^{2} \theta-\tan ^{2} \theta=1 we know sec
2
θ−tan
2
θ=1
Apply this in eqn 1 we get
=\frac{\tan \theta+\sec \theta-\left(\sec ^{2} \theta-\tan ^{2} \theta\right)}{\tan \theta-\sec \theta+1}=
tanθ−secθ+1
tanθ+secθ−(sec
2
θ−tan
2
θ)
On expanding we get,
=\frac{\tan \theta+\sec \theta-(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)}{\tan \theta-\sec \theta+1}=
tanθ−secθ+1
tanθ+secθ−(secθ−tanθ)(secθ+tanθ)
=\frac{(\tan \theta+\sec \theta)\{1-(\sec \theta-\tan \theta)\}}{\tan \theta-\sec \theta+1}=
tanθ−secθ+1
(tanθ+secθ){1−(secθ−tanθ)}
=\frac{(\tan \theta+\sec \theta)\{1-\sec \theta+\tan \theta\}}{\tan \theta-\sec \theta+1}=
tanθ−secθ+1
(tanθ+secθ){1−secθ+tanθ}
\begin{lgathered}\begin{array}{l}{=\tan \theta+\sec \theta} \\\\ {=\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}=\frac{\sin \theta+1}{\cos \theta}} \\\\ {\frac{1+\sin \theta}{\cos \theta} \times \frac{1-\sin \theta}{1-\sin \theta}=\frac{1-\sin ^{2} \theta}{\cos \theta(1-\sin \theta)}}\end{array}\end{lgathered}
=tanθ+secθ
=
cosθ
sinθ
+
cosθ
1
=
cosθ
sinθ+1
cosθ
1+sinθ
×
1−sinθ
1−sinθ
=
cosθ(1−sinθ)
1−sin
2
θ
\begin{lgathered}\begin{array}{l}{=\frac{\cos ^{2} \theta}{\cos \theta(1-\sin \theta)}=\frac{\cos \theta}{1-\sin \theta}=\mathrm{R} . \mathrm{H.S}} \\\\ {\text { Hence Proved }}\end{array}\end{lgathered}
=
cosθ(1−sinθ)
cos
2
θ
=
1−sinθ
cosθ
=R.H.S
Hence Proved
Learn more about this topic
Sin theta -cos theta plus one / sin theta plus cos